

33-231

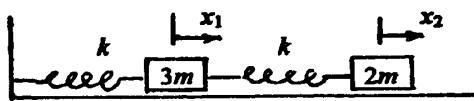
Exam IV

December 4, 2002

1. (30 points = 12 + 18)

Name _____

a) For the system shown, obtain the \mathbf{M} and \mathbf{K} matrices, using the coordinates shown.



1	
2	
3	
4	
total	

$\sum F = ma$ equations:

$$3m \ddot{x}_1 = -kx_1 + k(x_2 - x_1) = -2kx_1 + kx_2$$

$$2m \ddot{x}_2 = -k(x_2 - x_1) = kx_1 - kx_2$$

$$\underline{\underline{M}} = \begin{pmatrix} 3m & 0 \\ 0 & 2m \end{pmatrix}, \quad \underline{\underline{K}} = \begin{pmatrix} 2k & -k \\ -k & k \end{pmatrix}$$

(continued)

1. (continued)

b) A certain oscillating system, not the same one as in part (a), has the following

$$\mathbf{M} \text{ and } \mathbf{K} \text{ matrices: } \mathbf{M} = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}, \quad \mathbf{K} = \begin{pmatrix} 5k & -2k \\ -2k & 2k \end{pmatrix}.$$

Use these matrices to obtain the normal-mode frequencies and eigenvectors. Describe in words the amplitude relations for each mode.

$$|\underline{\underline{K}} - \lambda \underline{\underline{M}}| = 0 : \begin{vmatrix} 5k - \lambda m & -2k \\ -2k & 2k - \lambda m \end{vmatrix} = 0$$

$$(5k - \lambda m)(2k - \lambda m) - 4k^2 = 0$$

$$6k^2 - 7k\lambda m + \lambda^2 m^2 = 0, \quad (6k - \lambda m)(k - \lambda m) = 0$$

$$\lambda_1 = \frac{k}{m} : \begin{pmatrix} 5k - \left(\frac{k}{m}\right)m & -2k \\ -2k & 2k - \left(\frac{k}{m}\right)m \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0$$

$$\begin{pmatrix} 4k & -2k \\ -2k & k \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0 \Rightarrow 4ka_1 - 2ka_2 = 0, \quad 2a_1 = a_2$$

$$\underline{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

(Masses move in phase; second mass has twice the amplitude of first)

$$\lambda_2 = \frac{6k}{m} : \begin{pmatrix} 5k - \left(\frac{6k}{m}\right)m & -2k \\ -2k & 2k - \left(\frac{6k}{m}\right)m \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = 0$$

$$\begin{pmatrix} -k & -2k \\ -2k & -4k \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = 0 \Rightarrow b_1 = -2b_2, \quad \underline{b} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

Masses move $\frac{1}{2}$ cycle out of phase; first mass has twice the amplitude of second.

$$\omega_1 = \sqrt{\frac{k}{m}}, \quad \omega_2 = \sqrt{\frac{6k}{m}}$$

2. (20 points = 7 + 7 + 6)

A flexible rope has a total length of 2.00 m and a total mass of 0.600 kg. It is stretched with a tension of 120.0 N.

a) Find the speed of transverse waves on the rope. Carry units through your calculation and verify that they are consistent.

$$F = 120.0 \text{ N}, \quad \mu = \frac{0.600 \text{ kg}}{2.00 \text{ m}} = 0.300 \text{ kg/m}$$

$$c = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{120.0 \text{ N}}{0.300 \text{ kg/m}}} = \sqrt{\frac{120.0 \text{ kg m/s}^2}{0.300 \text{ kg/m}}}$$

$$= \sqrt{400 \text{ m}^2/\text{s}^2} = [20.0 \text{ m/s}]$$

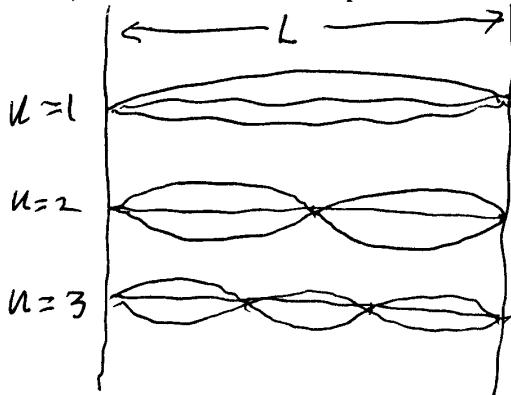
b) If the ends of the rope are held stationary, find the frequencies of the three normal modes that have the lowest frequencies.

$$L = n \frac{\lambda}{2} ; \quad \lambda = \frac{c}{f} ; \quad L = \frac{n c}{2f} , \quad f = \frac{n c}{2L}$$

$$n=1: \quad f_1 = \frac{(1)(20 \text{ m/s})}{2(2.00 \text{ m})} = 5.00 \text{ s}^{-1} = 5.00 \text{ Hz}$$

$$n=2: \quad f_2 = 10.0 \text{ Hz} \quad n=3: \quad f_3 = 15.0 \text{ Hz}$$

c) Sketch the vibration pattern for each of the three modes in (b).



3. (30 points = 10 + 10 + 10)

Two ropes lie along the x axis; they are tied together at the point $x = 0$ and are stretched with tension F . The rope in the $x < 0$ region has linear mass density μ_1 , and the rope in the $x > 0$ region has linear mass density μ_2 . A sinusoidal incident wave with angular frequency ω , wave number k , and amplitude A travels in the positive x direction toward the point $x = 0$.

a) Write an expression for the total wave function in the region $x < 0$ and an expression for the total wave function in the region $x > 0$. Let the amplitudes of the incident, reflected, and transmitted waves be A , B , and C , respectively

$$x < 0: \psi_-(x, t) = A \cos(k_1 x - \omega t) + B \cos(k_1 x + \omega t)$$

$$x > 0: \psi_+(x, t) = C \cos(k_2 x - \omega t)$$

b) State the boundary conditions that must be satisfied at the point $x = 0$; explain briefly the basis of each.

① at $x = 0$, $\psi_-(0, t) = \psi_+(0, t)$ because ends of the two pieces have to meet at $x = 0$

② at $x = 0$, $\left(\frac{\partial \psi_-}{\partial x}\right)_{x=0} = \left(\frac{\partial \psi_+}{\partial x}\right)_{x=0}$.
at junction, the two ropes must have the same slope because the knot is massless and total transverse \mathbf{F} must be zero.

(continued)

3. (continued)

c) Use the boundary conditions in part (b) to obtain equations that can be solved to obtain expressions for the amplitudes B and C as multiples of A . Do not solve these equations, but write them in forms that contain only μ_1 , μ_2 , A , B , and C .

$$\textcircled{1} \quad A \cos(-\omega z) + B \cos(\omega z) = C \cos(-\omega z) \quad \begin{matrix} \cos(-\alpha) = \cos \alpha \\ \sin(-\alpha) = -\sin \alpha \end{matrix}$$

$$A + B = C$$

$$\textcircled{2} \quad -A k_1 \sin(-\omega z) - B k_1 \sin(\omega z) = C k_2 \sin(-\omega z)$$

$$A k_1 - B k_1 = C k_2 \quad (\omega \text{ must be the same for both sides})$$

$$k_1 = \frac{\omega}{\mu_1} = \omega \sqrt{\frac{\mu_1}{F}}$$

$$k_2 = \frac{\omega}{\mu_2} = \omega \sqrt{\frac{\mu_2}{F}}$$

$$\text{so } A \omega \sqrt{\frac{\mu_1}{F}} - B \omega \sqrt{\frac{\mu_1}{F}} = C \omega \sqrt{\frac{\mu_2}{F}}$$

$$A \sqrt{\mu_1} - B \sqrt{\mu_1} = C \sqrt{\mu_2}$$

4. (20 points = 10 + 5 + 5)

a) In Problem 3, assume that A , B , and C are known. Derive an expression for the instantaneous rate of energy flow past the point $x = 0$.

$$\begin{aligned}
 P &= -F \frac{\partial y_1}{\partial x} \frac{\partial y_2}{\partial t}; \text{ at } x=0, \\
 &= -F(-Ck_1 \sin(-\omega t)) (+C\omega \sin(-\omega t)) \\
 &= FC^2 k_1 \omega \sin^2 \omega t = \boxed{FC^2 \frac{\omega^2}{c} \sin^2 \omega t}
 \end{aligned}$$

b) Show that the instantaneous energy flow is always in the direction of increasing x .

P expression must be non-negative
because $\sin^2 \omega t$ is non-negative and
the parameters are always positive

c) If the angular frequency of the incident wave is doubled, with μ_1 , μ_2 , F , and A remaining the same, by what factor does the rate of energy flow change? Explain your answer briefly.

C doesn't change; P contains ω^2 ,
so when ω doubles, P increases
by a factor of 4.