
33-231   Physical Analysis Fall 2003 
 
Problems:  Set 9  (due Wednesday, October 29, 2003) 
 
35. This problem continues the analysis of the two-well potential-energy function of  
 Problems  33  and  34.  Now we add a periodic driving force.  We’ll use numerical  
 solutions of the differential equation to experiment with some of the parameters of 
 the problem and observe the resulting motion.  Use the same  numerical values as in 
 Problems  33  and  34,  namely,  a = 1,  m = 1,  k = 1,  and  b = 0.1. 
 
 Note:  We will be looking for limit cycles in the phase trajectories.  Sometimes the  
 driving force has to go through many cycles before the limit cycle becomes apparent. 
 In some cases you may have to take  t  up to  500  or so, and plot  1000  or more  
 points,  to see the limit cycle.  It may take a little time for Maple to plot the phase 
 trajectory, depending on your processor speed.  Be patient!  Don't print out all your  
 plots, only one or two representative ones for each part of the problem. 
 
 a) For the situation of Problem 34,  we add a sinusoidal driving force    
  F = Fo cos ωt.  Write the general differential equation  (from  ΣF = ma). 
 
 b) Obtain a numerical solution and a phase plot for the equation obtained in (a).  As  
  an initial trial, I suggest  Fo = 0.02  and  ω = 0.2.  Take the initial conditions to be   
  xo = 0,  vo = 0.  You should find a limit cycle, but note the wonderfully circuitous  
  route the phase point takes in approaching the limit cycle.  Also make a plot of  
   x  vs.  t,  which shows a different representation of the approach to the limit  
  cycle.  Be sure to plot enough points to obtain smooth curves. 
 
 c) In view of the result of (b), can you suggest a set of initial conditions that would 
  make the system approach the limit cycle more quickly?  Try them and see  
  whether they have the expected result.  
 
 d) Set the initial conditions back to  xo = 0,  vo = 0,  and increase  Fo.  I suggest 
  increasing it in steps of  0.02,  up to  0.10.  You may want to indulge in the 
  luxury of a few runs with  t  up to 1000  and  numpoints = 5000  or  10000.  
  Do you reach a point where there no longer seems to be a limit cycle?  How can 
  you be sure a limit cycle wouldn’t appear if you ran the solution long enough? 
 
 e) Now try increasing  Fo  still more and experiment with small variations in initial 
  conditions, to explore the question whether the motion is very sensitive to small 
  changes in initial conditions.  Summarize your results in words.  For the grand  
  finale, try  Fo = 0.4,  ω = 0.4  (the values used in class on October 22). 
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36. The logistic map, which we discussed in class, has played a very important role in 
 the study of population growth, nonlinear dynamics, and many other areas.  The map 
 is expressed by the equation   x ax xn n n+ = −1 1( ). 

 a) If the first element in the sequence (i.e.,  xo)  is  in the range  0  ≤  xo  ≤  1,  show  
  that all succeeding  xn’s  in the sequence also lie in this range, provided that   
  0  ≤  a  ≤  4. 

 b) For any given value of  a,  derive an expression for the value (or values) of  xn   
  such that  xn+1 = xn. 

 c) For given values of  a  and  xo,  we want to compute a list of  xn’s, large enough 
  to determine whether they seem to be approaching an attractor.  There are several  
  ways to do this using Maple.  The simplest is to compute a sequence of values. 
  If we choose  a = 2.5  and compute  20  values, starting with  x = 0.5,  
 
   restart; 
   a := 2.5;     x := 0.5;     N := 20; 
   for n from 1 to N   do 
   x := a*x*(1 − x); 
   end do; 
 
  The variable  N  counts the number of iterations; each value of  x  is computed by  
  substituting the previous value of  x  into the logistic equation. 
 
  A somewhat more elegant way is to use the notation  x[n],  in which Maple  
  interprets the quantity in square brackets as a subscript, as in  xn.  Thus: 
 
   restart; 
   a := 2.5;     x[0] := 0.5;     N := 20; 
   for n from 0 to N  do 
   x[n + 1] := evalf(a*x[n]*(1 - x[n])); 
   end do; 
 
  Still nicer is to plot a graph  showing  xn  as a function of  n.  The Maple  plot   
  command will plot a list of points, if you give it a list of pairs of numbers   
  (coordinates) for the points.  (Note that each pair is itself a list.)  For this 
  problem  we can use  seq  to generate a list of coordinate pairs, [n, x[n]],  which  
  we’ll call  pointlist.  That is,  pointlist := seq([n, x[n]], n = 0..N):   All  
  together, it looks like this: 

   restart; 
   a := 2.5,     x[0] := 0.5;     N := 20; 
   for n from 0 to N  do 
   x[n + 1] := evalf(a*x[n]*(1 - x[n])): 
   end do:   
   pointlist := seq([n, x[n]], n = 0..N): 
   plot([pointlist]); 
     (continued) 
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36. (continued) 
 
  I suggest placing semicolons at the ends of lines  4  through 6  until you are sure  
  it’s working; then replace them with colons to suppress the information you  
  don’t need.  That’s important when you need to let  n  run up to several hundred. 
 
  Maple will draw lines between the points unless you tell it not to.  Try using the  
  plot options  style = point  and  symbol = cross.  The "plot" command is  
  then  plot([pointlist], style = point, symbol = cross);   Read the Maple  
  help file  ?plot[options]  for details.   
 
  Also note that  "pointlist"  has to be in square brackets to show that it is indeed a 
  list.  Alternatively, we could put the right side of the next to last line in square  
  brackets: 
 
   pointlist := [seq([n, x[n]], n = 0..N)]: 
 
  Then the square brackets aren't needed in the  "plot" command. 
 
  Now back to the problem.  Choose a value of  a  between  1  and  2.5, and try  
  several different values of  xo  to check whether the attractor is independent of  
  xo.  Then try a different value of  a  and  again find the attractor.  Compare your 
  results  with predictions obtained from the result of  (b). 
 
 d) Take  a  = 3.1, and obtain an equation for the value of  xo  such that for each  x, 
  xn+2 = xn.  This will be a fourth-degree equation;  use Maple to find the roots  
  of this equation that lie in the range  0  ≤  x  ≤  1.  You should find two  
  attractors. 
 
 e) For  a = 3.1,  choose a few values of xo  and repeat the calculations of  (c)   
  for each.  Compare the attractors you find with your predictions from  (d). 
 
 f) By trial and error, find the value of  a  for which the second bifurcation occurs 
  and the sequence of  x’s  converges to a repeating cycle of four attractors. 
 
 g) Show that when  a = 3,  the  line  y = x  is perpendicular to the tangent to the  
  curve  y ax x= −( )1   at the point of intersection.  What does this tell you about 
  whether the value of  x  at this point is an attractor or a repeller? 
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37. Consider the mapping    xn+1 = a sin(π x n). 
 
 a) Find the permissible values of  a  such that  every  xn  is in the range  0 1≤ ≤xn  
  if  xo  is in that range. 
 
 b) If  a = 0.6,  use the Maple  fsolve  command to find the values of  x  such  
  that  xn+1 = xn.  Are these values attractors or repellers? 
 
 c) Show that if  a = 0.5,  then  x = 0.5  is an attractor. 
 
 d) By trial and error, show that bifurcations occur at sufficiently large values of  a. 
  The first is around 0.72, and the next three are between  0.83  and  0.87.  Find the 
  values of  a  for the first three bifurcations, to three significant figures. 
 
 
38. a)  For the system shown,  write the 

  ΣF = ma  equations, using the  
  coordinates shown. 
     
 b) From these equations, find the frequencies of the normal modes and the 
  amplitude relation for each normal mode. 
   
 c) Obtain a normal-coordinate transformation.  That is, obtain equations for  
  x1  and  x2  in terms of  q1  and  q2.  Also obtain equations for the inverse 
  transformation (the equations for  q1  and  q2  in terms of  x1  and  x2). 
 
 d) Express the  ΣF = ma  equations in terms of the normal coordinates, and show 
   that they can be separated into two uncoupled equations, each of which contains  
  only one normal coordinate.  Solve the equations for the normal coordinates, and  
  verify that you get the same normal-mode frequencies as in part (b). 
 
 e) Write an expression for the total energy of the system in terms of  x1,  x2,  and 
  their derivatives.  Then express this quantity in terms of the normal coordinates, 
  and show that it can be separated into two parts, each of which contains only 
  one normal coordinate. 
 
 f) Express the normal-coordinate transformation in terms of a matrix equation. 

  That is, let    x q= F
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and    ,      and find a matrix  A  such that 

  x  =  Aq.   Find  A−1  (the inverse of  A), and verify that the transformation  

  q  =  A−1x  gives the same equations as those obtained in  (c). 
 
 

 


