Problems: Set 13 (due Monday, November 24, 2003)

- 51. a) Show that Eq. (31) satisfies the boundary condition $\frac{\partial y}{\partial x} = 0$ at x = 0.
 - b) Derive Eq. (32) from Eq. (31).
 - c) A rope with length L has the end at x = 0 attached to a ring that slides without friction on a transverse rod, as in the figure on page 13-9 of the notes. The other end, at x = L, is held stationary. Derive a general expression for the angular frequencies of the normal modes, and a general expression for the wave function corresponding to each.

<u>Hint</u>: Equation (32) satisfies the boundary condition at x = 0 for *any* value of *k*. The boundary condition at x = L is satisfied only for certain values of *k*.

- 52. a) Derive Eqs. (38) and (39) from Eqs. (36) and (37).
 - b) Express Eqs. (39) in a form that contains only μ_1 , μ_2 , and the amplitudes.
- 53. A sinusoidal wave $y(x,t) = A\cos(kx \omega t)$ travels in the +x direction on the portion of a rope to the left (x < 0) of the midpoint of the rope. At the midpoint (at x = 0) it is tied to a massless ring that slides on a frictionless rod, similar to the arrangement in the figure on page 13-9, except that there is rope on both sides of the ring. The linear mass density μ is the same on both sides, but the tension *F* has one value F_1 for x < 0 and a different value F_2 for x > 0.
 - a) Derive expressions analogous to Eqs. (38) and (39) for the amplitudes of the transmitted and reflected waves.
 - b) Express the result of (a) in a form that contains only F_1 , F_2 , and the amplitudes.
- 54. A sinusoidal wave $y(x, t) = A \cos(kx + \omega t)$ travels in the -x direction on a rope, toward the point x = 0. If this point is held stationary, the reflected wave is inverted. If it is held as in the diagram on page 13-9, the reflected wave is *not* inverted. But it is also possible to attach the rope to a device so that there is *no* reflected wave. What characteristics should this device have?

<u>Hint</u>: At the point x = 0 the transverse force F_y on the end of the rope, its transverse velocity v_y , and the slope M, all vary sinusoidally with time. Show that at every instant F_y is directly proportional to v_y . That is, $F_y = -bv_y$, where b is a constant that depends on the device. What sort of device has this behavior? Derive an expression for b in terms of F and μ . The constant b is called the *characteristic impedance*, for reasons that we'll discuss in class.

33-231