
3     Numerical Solutions of Differential Equations Fall 2003 
 
 
References:  Stewart  Calculus - Early Transcendentals  (4th edition),  Sec. 9.2 
                      Edwards and Penney  Differential Equations   (2nd edition),  Sec. 2.4 
 
Note:  In this discussion we revert to the ordinary concept of a function rather than the 
more specialized notion discussed in  Section 2. 
 
Suppose  y  is a function of time  t,   y = f(t),   that satisfies the differential equation 

 
dy
dt

F y t= ( , ),         where  F(y,t)  is a known function.  

For many differential equations the solution  y = f(t)  cannot be expressed in terms of 

familiar functions.  A simple example of such a differential equation is    
dy
dt

y t= +2 .    

When  y = f(t)  cannot be expressed in terms of familiar functions, we would like to 
develop a scheme for computing an approximate numerical value of  y  for any specified 
numerical value of  t.  We could then plot a graph of  y  as a function of  t, and explore 
the properties of the function. 
 
Euler's Method 
 
To determine a unique solution, we need a starting point (the value of  y  at some initial 
value of  t).  Let the initial value of  t  be  to,  and let the value of  y  at this time be  yo.  
That is,   yo = f(to),  where the values  yo  and  to  are specified at the beginning.  Then we 
can get an approximate value for  y  at a slightly later time, say,  t1 = to + ∆t, as follows: 
 
During the time interval  ∆t, the change  ∆y  in  y  is given approximately by  

 ∆ ∆y
dy
dt t t
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I
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(This becomes exact in the limit as  ∆t → 0.)   Let  y1  be the value of  y  at time  t1; then  

 ∆ ∆y y y
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dt t t
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Also, from the differential equation,   
dy
dt t t

F y tF
HG

I
KJ =

=
o

o o( , ),       so 

 y y F y t t1 o o o≅ + ( , ) .∆  
 
Because  yo  and  to  are known, we can evaluate this and get an approximate value for  y1.  

In the above example, where F y t y t( , ) ,= +2     we obtain    

 y y y t t1
2≅ + +o o o( ) .∆  
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Using this approximate value for  y1,  we can now repeat this whole process to get the 
approximate value  y2  at the slightly later time  t2 = t1 + ∆t:    
 
 y y F y t t2 1 1 1≅ + ( , ) .∆  
 
(We are assuming that the time intervals between successive points are all equal to  ∆t.)   
 
In this way we construct a sequence of solution points  (yi, ti).  When we connect these 
points with line segments,  the result should be some approximation of the curve 
representing the actual solution  y = f(t).  Intuitition suggests that the smaller  ∆t  is, the 
more precise our approximation will be. 
 
We can implement this scheme using Maple.  In the above example, let  yo = 0  and  
to = 0.  It's customary in the literature to denote the step size  ∆t  as  h.  Then 
tn = nh.   Suppose  h = 0.1.  If we take a total of ten steps (so  n  goes from 0 to 9), the 

maximum value of  t  is  1.  For our example, with  F y t y t( , ) ,= +2   a possible Maple 
scheme is: 
 
 restart; 
 y[0] := 0; 
 for n from 0 to 9  do 
 y[n + 1] := y[n] + (y[n]^2 + n*0.1)*0.1; 
 end do; 
 
(Note the use of square brackets,  y[n],  to denote the subscripted variable  yn.) 
 
To make it easier to experiment with various values of  h,  and various ranges of   
values of  t,  you may want to use something like 
 
 restart; 
 h := 0.1;     nmax := 9;     y[0] := 0; 
 for n from  0  to nmax  do 
 y[n + 1] := y[n] + (y[n]^2  +  n*h)*h; 
 end do; 
 
Or if you want to make a table of  y's  and the corresponding  t's,  you can end the fourth 
and fifth lines with colons and add the following line between them.  Try it! 
 
 print([n*h, y[n] ] ) ;  
 
This procedure is called Euler's method.  Intuitively, the precision should improve if we 
decrease the step size  h.  In fact, it can be shown that for a given differential equation, 
the cumulative error in the approximation at any point is proportional to h.  Hence this is 
called a first-order method; decreasing the step size  h  by a factor of  1/2  decreases the 
cumulative error by the same factor. 
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Improved Euler Method 
 
There are various ways of refining this process to obtain better precision with only 
modest increase in computation.  One of the simplest refinements is the following.  
Instead of computing  yn+1  by evaluating  F(y, t)  at  the point  [yn, tn], we first use this to 
get an estimate of yn+1,  which we may call  yest.  We then use this to get an approximate 
value of F(y, t)  at  time  tn + h,  and then compute   yn+1  by using the average of  F(yn,tn)  
and  F(yest, tn+1).   Geometrically, this amounts to computing the next point on the curve 
not by using the slope at the previous point, but by first estimating the slope at the next 
point, and then computing the next point by using the average slope in the interval. 
 
More explicitly 
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and finally 
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Using the average slope of  y(t)  in each interval instead of the slope at the beginning 
improves the precision of the method greatly.  It can be shown that in this scheme the 
accumulated error in the computation, for any given equation, is proportional to  h2, and 
this is called a second-order method.  Changing  h  by  a factor of  1/2  changes the 
cumulative error by  1/4. 
 
Runga-Cutta Method 
 
The Runga-Cutta method is a further elaboration of the basic idea of the improved Euler 
method.  It uses estimates of  y  and  dy/dt  at several points in each interval during the 
computation of  yn+1  from  yn.  For a given step size and range of values of  t,  it requires 
five to 10 times as many computations as the Euler method, but the cumulative error can 
be shown to be proportional to  h4.  Decreasing  h  by 1/2 decreases the cumulative error 
by  1/16.  This method is very widely used.  One of the methods Maple uses is a version 
of the "fourth-order Runga-Cutta" method.  Maple can also vary the step size, using 
larger steps in regions where the function is changing slowly, hence economizing on 
computations. 



3-4     Numerical Solutions of Differential Equations 

Higher Order Equations 
 
All the methods described above can be adapted to numerical solution of equations 
containing higher-order derivatives.  In mechanics, where Newton's second law contains 

a second derivative, we often encounter equations containing  y
dy
dt

d y

dt
, , .and

2
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For such cases, let  v
dy
dt

d y

dt

dv
dt

= =; .then        
2

2      This process converts the single  

second-order equation for  y  into two coupled first-order equations for  y  and  v.   
 
Similarly, suppose there are two variables, say  x  and  y,  and two coupled second-order 
equations.  (A familiar example is a trajectory problem with air resistance, where  x  and  
y  are the coordinates of the particle, both functions of  t.)  We can define   
 

 vx
dx
dt

vy
dy
dt

= =and       .     

 
This converts the pair of second-order equations into a set of four coupled first-order 
equations, which can be solved with an elaboration of any of the methods described 
above.  Maple does this simply and painlessly. 


