11 Norma Modes -- Matrix Methods Fall 2003

Matrix methods provide a very powerful tool for analyzing norma modes of coupled
ogcillator systems. Well introduce this genera gpproach by means of an example, the
same system we discussed in detail in Section 8 of these notes. Our development will
pardld the previous trestment, but well use matrix language.

Example

For the system discussed in Section 8, the equations of motion (from SF = ma) are

m¥; = - (k + Kk'")x; + K' Xy,

mx, = k' ' 3
> = K'xq - (k+K)X.

The equations of motion can be written as a Sngle matrix equation:

m 0)( %) _ k+k' -Kk'\(x @
0 mil,) -k k+k) %)
Each side of this equation is a column matrix. 'Y ou should verify that when the matrix

products are carried out, equeting the first (top) dements on the two Sdes gives the first
of Egs. (1), and equating the second (bottom) elements gives the second.

_[ %
X = [ij. 3

M = - Kx. (4)

We definethe matrices M, K, and x asfollows

m O k+k' -k
M = , K = '
0O m -k' k+Kk

Then EQ. (2) can bewritten Smply as

For other sysems with different arrangements of masses and springs, the M and K
matrices will be different. But if the spring forces are linear functions of the coordinates,
the equations of motion can aways be written in the form of Eq. (4). So thefallowing
development is generd, and is not restricted to the specific example cited above.

Note that the (1,1) element of K represents the negative of the force on mass 1 when it
isdisplaced adigtance x;. The (1,2) dement is the negative of the force on mass 1
when mass 2 isdislaced adistance x»2, and soon. Thisgives an dternaive way to
determine the dementsof K, ingtead of working out Egs. (1) from SF = ma.

Caution: Some books define K with the opposite Sgn, so thereis no minusin Eg. (4).
(See, for example, Edwards and Penney, p. 321.) We prefer to retain the minus sign, so
that Eq. (4) has the same form as the equation of motion mx = - kx for asingle

particle.
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General Formulation

For anorma mode, each x mug vary snusoiddly, and dl x's must have the same
frequency. Therefore wetry to find asolution of Eq. (4) in the form

[2] = C[:jcos(wt +j), or X = Cacos(wt +j ). (5)

Inthisexpresson, C isascda amplitude factor (determined by initid conditions), and

a isacolumn matrix (or vector) whose dements a;, a, givetheratios of the amplitudes
of the x's for each norma mode. For example, if a, = 2a;, the motion of the mass
with coordinate X, isin phasewiththat of x; , but with amplitude twice as grest.

Taking the second time derivative of Eq. (5), we get
% = - w’Cacos(wt+j ) =- | Cacos(wt+j ), whee | =w? (6)
To test whether Eq. (5) redly isasolution of Eq. (4), we substitute Egs. (5) and (6)
into Eq. (4). After dividing out the common factor C cos (wt +j ), we get
-IMa=-Ka, or (K-1M)a=0. )

Thisisaset of amultaneous, homogeneous equations for the dements of the column
matrix a. (Thisshould sound familiar!) Non-trivid equations exigt if, and only if, the
determinant of the system is zero, that is, when

K-1M|=0 €)

Thus Eq. (5) isasolution of Eq. (4) if, and only if, thevalueof | =w?* satisfiesEq. (8).
This condition is cdled the secular equation for the system; it is satisfied only for certan
particular vduesof |, theroots of the secular equation.

For our example, weusethe M and K matricesfrom Egs. (3). The corresponding
secular equation is:

k+Kk'-m - K
. . = 9)
-k k+k'-ml

Thisagreeswith Eq. (4) in Section 8 of these notes (page 8-2).
Equation (8) is an dgebraic equationfor | . The degree of the equation (and hence the
number of roots) is equa to the number of coordinates of the system (i.e., the number of
degrees of freedom). In some problems two or more roots may be equal.
In our example, there are two roots:

|, =X |, =kr2K (10)

m’ m
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Thevauesof | that satisfy Eq. (8) are cdled eigenvalues. There are as many vaues of
| asthe number of degrees of freedom of the system. For eechvdueof |, thereisa
correponding column matrix (or vector), giving the amplitude ratios for the x's for the
corresponding norma mode. Well cdl theeigenvadues |4, | 2, 13, -+ ; let a bethe
column matrix correspondingto | 1, let b be the column matrix corresponding to | 2,
and soon. Thecolumnmatrices a, b, ¢, --- are the eigenvectors corresponding to the
ggevaues | 1, 12, |3, -+, respectivey. Then

(K -1 M)a=0, (K-1,M)b =0, (K-1M)=0, . (11)
The most generd solution of Eq. (4) can now be written as

x = Cacos(w,t +j,) + Chcos(w,t +j,) + Cecos(wyt+j,) + . (12)

The congants C;, Cy, C3, -+ and j 1, j 2, ] 3 --- depend ontheinitid pogtionsand
velocities of the two masses), and the norma-mode frequencies are

wo=l w =4,

As before, we define the norma coordinates for the system as

a1 = C COS(W]_t +j 1), Oz = C, COS(Wzt +j 2), Oz = Cs COS(W3t +j 3), cee (13)

Then the normal-coordinate transformation can be written as

X = qua + b + gsc + -+ . (14)
Now we define g to be a column matrix whose e ements are the normal coordinates
01, O2, O3, -, ahd we define asquare matrix A whose columns are the eigenvectors
a, b, ¢, --- . Fortwo degrees of freedom,
q:[%) and A:(al blj. (15)
a, a b
The normd coordinate transformeation then becomes smply
X =Aq. (16)

For our example,

<) ) Al

which agrees with the results at the end of Section 8 (page 8-5). (But note thet thereisa
lot of arbitrarinessin the definition of A, because each q can be multiplied by an
arbitrary numerica congtant.)
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Thiswhole procedure is closely related to the discussion of eigenvaues and elgenvectors
in Section 10 of these notes. Suppose we multiply both sdes of Eq. (7) on the left by
ML, Theresltis

(MK - IMM)a = 0, or MKa=la (17)

Thet is, a isan eigenvector of thematrix (M~ *K) , with éigenvaue | 1. Smilarly, from
Eq. (11), b isaneigenvector of (M 1K) with eigenvaue | », and so on.

If our objectiveis only to find the norma-mode frequencies and vibration patterns, we
arefinished. Each egenvdue | isthe square of anorma-mode frequency w, and each
corresponding elgenvector gives the rdative amplitudes of motion of the various masses
for the normal-mode motion with this frequency.

However, there are problemsin which we need to determine the congstants C;, C,, Csg,

-and j1,] 2,3 - InEQ (12) intermsof theinitid vaues of the coordinates and
veocities. Thiswould be farly smpleif the eigenvectors a, b, c, --- weredl mutudly
orthogonal. We could then multiply Eq. (12) successively by the transpose of each
elgenvector, and dl but one term on the right would be zero. We stated in Section 10
(page 10-4) that the eigenvectors of a symmetric matrix are dl mutudly orthogond if
they correspond to ditinct eigenvalues.

In our example problem, the matrices M, M™%, K, and MK are dl symmetric, and
the egenvectors are orthogond. But thisis an accident resulting from the symmetry of
our physical system and our choice of coordinates. Ingenerd M and K are not
symmetric; even when they are symmetric, the product M 1K in generd isnot
symmetric. Soin generd the eigenvectors a, b, ¢, --- are not mutudly orthogond.
But it turns out that we can develop generdized concepts of normdization and
orthogondity that are useful for fitting initid conditions and in other Stuations.

Nor malization of Eigenvectors

Wefirg generdize the concept of normdization. Because the eigenvectors a and b
serve only to give the ratios of the amplitudes of motion of the various masses, for each
norma mode, we are free to multiply each eigenvector by any constant. It turns out to be
useful to multiply each eigenvector by a congtant such that

a'Ma = 1, b'Mb =1, c¢'Mc=1, andsoon. (18)

(The more usud normalization condition issimply to requirethat a'a=1, b'b =1, and
soon,or, a°+a, +a,” +--- =1, andsoon.) When the eigenvectors are multiplied by

factors such that they satisfy Egs. (18), they are said to be normalized, inthis
generdized sense.
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In our example, where

ol o)

the un-normalized a gives a'Ma = 2m. Wemultiply a by 1/~2m; then a’Ma = 1.
So in our example problem, the normdized eilgenvector a corresponding to the

dgenvalue | 1 = 4/k/m is

a= 1 (1 (29
~mla)
and the normaized eigenvector b corresponding to eigenvalue | » = J(k + 2k')/m is
1 (1 1 (-1
b=— or b=— : 20
«/Zm(- 1) «/Zm( 1) (20)

(Note that even with the normalization conditions, the eigenvectors are not determined
uniquely; each one can dways be multiplied by - 1.)

Orthogonality of Eigenvectors

Inthegenerd case,if 14, | 2, | 3, --- aedlunequd, andif M and K are symmetric
matrices (asin our example), then it can be shown that

alMb =0, aMc=0, b'Mc=0, - . (21)

Note that the usual definition of orthogondlity of two vectorsa and b isa'b = 0, i.e,
the scalar product of a and b iszero. So Eq. (21) represents agenerdization of the
concepts of the scalar product and of orthogondity of two vectors. We invite you to
verify that the eéigenvectors a and b in our example problem do stisfy this condition.

If the system has three or more degrees of freedom, then any two eigenvectors that
correspond to unequa eigenvalues are orthogond in the sense of Eq. (21).

To prove Egs. (21), we start with Egs. (11):

Ka=1,Ma and Kb =I ,Mb. (22)
Multiply the first equation on theleft by b", and the second ontheleftby a'.

b'Ka=1,0'"Ma, a'Kb=1,a"Mb. (23)
Take the transpose of the entire first of Egs. (23):

(bTKa)T =1 4(b™ a)T. (24)

The transpose of a product of matrices equals the product of the transposesin the reverse
order; dso, (b")" =b, so Eq. (24) can bewritten
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a'kK™b =1,a"™MTh. (25)

If K and M are symmetric, asin our example, then KT =K and M = M. (Well
discuss this property later.) Then EQ. (25) can be written.

a'Kb =1,a"Mb. (26)
Findly, we subtract Eq. (26) fromthe second of Egs. (23):
(I,-1,)a"™Mb =0. (27)

Thusif | , 2 |4, then a'Mb =0, and theeigenvectors a and b areorthogond in

the generdized sense we have defined. Smilarly, any pair of eigenvectors with unequal
elgenvaues are orthogond in this sense.

Initial Conditions

We can now use the orthogonality properties of the normaized eigenvectors to work out
relaionsto find the congtants C4, Cy, C3, -+ and j 1, j 2, J 3, -+ InEq. (12) if we
are given the initid vaues of the coordinates and velocities, which we denote by
x(0) and x(0), respectively. Attime t =0, Eq. (12) becomes

x(0) = Cacosj, + Cbcosj , + Cccosj , + ---. (28)
Smilarly, taking the time derivative of Eq. (12) and setting t = 0, we find

x(0) =- Cw,asinj , - Cw,bsinj , - Cw.csinj , - ---. (29)
Now see what happens when we multiply Eq. (28) ontheleftby a'M. We get

a'"Mx(0) = Ca'Macosj, + C,a'Mbcosj , + Ca'Mccosj , + ---. (30)

The matrix product in the first term on the right is unity, because of the normalization of
the eigenvectors, and al the other matrix products on the right are zero because of
orthogondlity . So Eq. (30) becomes smply

a'"Mx(0) = C,cosj ,. (31)
The same thing happens when we multiply Eq. (29) ontheleft by a’ M

a'"Mx(0) = - Cw,a'Masinj ; - Cw,a'Mbsinj, - Cw,a'Mcsinj , +---.(32)
Using the normdization and orthogonality conditions, we get

a'"Mx(0) =- Cw,sinj ,. (33)
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Now it is straightforward to solve Egs. (31) and (33) smultaneoudy to obtain C; and
] 1. And dl theother C's and j 's can be obtained the same way by multiplying Egs.
(28)and (29) by b, c, ---.

Diagonalization of K and M Matrices

The elgenvectors and eigenva ues can be used to congtruct the norma-coordinate
transformation; this transformation convertsboth K and M  into diagonal matrices.
From Egs. (11),

Ka=1,Ma, Kb =I,Mb, Kc=I ,Mc, --- . (34)

We can combine these equations into asingle matrix equation. Let aj, ap, as, ... bethe
elements of the normalized eigenvector a, and so on; then defineamatrix A congging
of the normdized eigenvectors as columns, that is.

A=|2 bl] (for two degrees of freedom), (35)
a b
a b ¢

A=la b © (for three degrees of freedom), (36)
ag by c3

and so on. (From here on we assume two degrees of freedom; the generalization to three
or more degrees of freedom will be clear.)

We can combine Egs. (34) as

I [
K[al blj _ M( 19 2b1} (37)
a; by @ 15,
Also note that
13 15y _ (& b\(11 O _ 39)
2, 1 5by a b){L0 I,
Now we define adiagona metrix L as
I 0
L=| . 39
5 v) @
Then
(Ilai Izbl):AL,
la, |b,

and Eq. (37) can bewritten as

KA = MAL. (40)
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Now we multiply this equation ontheleft by AT:

ATKA = ATMAL. (41)
Consider the product ATMA. Ingenerd, thisisequa to

(ai azj(mu mu)(ai blj

b, b )\m, m,J\a b

We see that thefirst row of AT and thefirst columnof A givethe normdization
condition for the eigenvector a. Thefirstrow of AT and the second column of A give
the orthogondity rdaion for a and b, and so on. Thusthe diagona eements of the

product ATMA aredl 1, and the off-diagond lementsaredl zero. Thatis, ATMA is
equa to the identity (unit) matrix, denoted by 1.

It follows from this result thet
T l, O
(A MA)L =L = , (42)
oI,
and, from Eq. (41),
ATKA = L. (43)
(Notethat L isadwaysdiagond, and that the diagond eements are the eigenvaues))
Thus we have the fairly astonishing result that the transformation ATM A turns M into

theidentity matrix |, anditturns K intoamarix ATKA = L that isawaysdiagond,
with diagond eements equd to the eigenvalues.

Example
For the same example we've been discussing al aong,
1 (1 1 (1 1 (1 1
a=—|, b=— , A = — : 44
«/Zm(lj «/Zm[- 1) A/2m [1 -1] (“44)
1 (1 1)m O) 1 (1 1 10
ATMA = —— = = 45
«/Zm(l -1)(0 m)«IZm(l -1) (O 1) (49)

k
1 (1 1Yk+k -k ) 1 (1 1) |m O
ATKA = —— —— = | . (46
«/Zm(l 1}[ -k’ k+k'J«/2m[l _J 0 k + 2k (46)
m

Y ou should verify Egs. (45) and (46) by carrying out the matrix multiplication, both by
hand and usng Maple.
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Normal Coordinate Transfor mation

The norma coordinate transformationisnow smply  x = Ag. We subgtitute thisinto the
equations of motion, Eq. (4):

Mx = -Kx, MAg=-KAQq. (a7)
Multiply ontheleftby AT:

ATMAY = - ATKAQg. (48)
But, as we showed above,

ATMA =| and ATKA =L. (49)

So Eq. (48) becomes
I 0 I
N RV R
d, 0 1)\ .0,
We see that the equations for the g's are decoupl ed; each equation contains only one q:

g, = - |10n = - W12q1v 4, = - I U= - W22Q2’ (51)
and so forth. Each g corresponds to a single norma mode.

Symmetry of M and K Matrices

In our example problem, both M and K happen to be symmetric. When they are not,
our orthogondlity proof is not valid, and Egs. (26) and (27) aren't correct. When the
equations of motion are obtained from Lagrange's equations, it can be shownthat M and
K arealways symmetric. But when we gart with SF = ma, the resulting matrices may
or may not be symmetric, depending on our choice of coordinates.

Suppose, for ingtance, that for our example sysemwelet x; be the displacement of the
left mass from equilibrium and let X, be the elongetion of the soring k'. Then the
digplacement of the right mass from equilibriumis x; + X, and itsaccderationis X, + X,
Y ou can verify that the equations of motion, in terms of these coordinates, are
m¥; = - kg + K' Xy,
il 1 2 (52)
rT’(Xl + Xz) = - le - (k + k')X?_.

In matrix form,

[2 :J(Z)::'(t QfLJ(ZJ' (53)

The M and K matrices are

M—mo K_k-k' "
_(m nJ, _[k k+kj. (54)
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Note that neither of these is symmetric. The secular equetion is

k-1m -k
K - 1M|= = 0. (55)
k-1m k+k- |

We leaveit as an exercise for the reader to show that the eigenvaues are again

k k + 2k’
I]_:m, |2: m y (56)

and the normalized eigenvectors are

1 1
az L[4 po L (1) Ao ift Y3 (57)
Jmlo Jam -2 Jmlo -2/43
Y ou should check that again the operation ATM A reduces M to the identity matrix |,
and that

T _ _ I1 0
A KA_L_(O |2]. (58)

Y ou can aso check the orthogondity of the eigenvectors, in this case they are not
orthogonal because M and K arent symmetric. However, we can reformulate the
problem by adding and subtracting the equations of motion, Egs. (52), toobtan M and
K matrices that are symmetric. Here'show wedo it. We can add the two origina
equations of motion, Egs. (52), to obtain

M(2% + %) = - 2kxy - k. (59)

Now we take this equation and the second of Egs. (52) to be the be the basic equations
of motion:
2% + X5) = - 2kx; - KXy,
m(2%, + %) 1 2 (60)
Mm% + %) = - kg - (k + k).

For these equations, the M and K matrices are
2m m 2k k
= , = . (62)
m m k k+Kk'
Now both M and K aesymmetric. The secular determinant is

2k-2Im  k-1Im _ g )
k-1m k+k-Inm =

You areinvited to complete this analysis by (1) showing that the roots of the secular

equation are the same as before, (2) obtaining the normalized eigenvector for each

egenvdue, and (3) showing that the eigenvectors are orthogond. Have fun!



