
11    Normal  Modes  --  Matrix  Methods Fall  2003 
 
Matrix methods provide a very powerful tool for analyzing normal modes of coupled 
oscillator systems.  We'll introduce this general approach by means of an example, the 
same system we discussed in detail in  Section 8 of these notes.  Our development will 
parallel the previous treatment, but we'll use matrix language. 
 
Example 
 
For the system discussed in Section 8,  the equations of motion  (from  ΣF = ma)  are 
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The equations of motion can be written as a single matrix equation: 
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Each side of this equation is a column matrix.  You should verify that when the matrix 
products are carried out, equating the first (top) elements on the two sides gives the first 
of Eqs. (1), and equating the second (bottom) elements gives the second. 

We define the matrices  M,  K,  and  x  as follows: 
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Then  Eq. (2)  can be written simply as   
 
 Mx Kx&& .= −   (4) 
 
For other systems with different arrangements of masses and springs, the  M  and  K  
matrices will be different.  But if the spring forces are linear functions of the coordinates, 
the equations of motion can always be written in the form of Eq. (4).  So the following 
development is general, and is not restricted to the specific example cited above. 
 
Note that the (1,1) element of  K  represents the negative of the force on mass  1  when  it 
is displaced a distance  x1.  The  (1,2) element is the negative of the force on mass  1  
when mass  2  is displaced  a distance  x2,  and so on.  This gives an alternative way to 
determine the elements of  K,  instead of working out Eqs. (1)  from  ΣF = ma.   
 
Caution:  Some books define  K  with the opposite sign, so there is no minus in Eq. (4).  
(See, for example, Edwards and Penney, p. 321.)  We prefer to retain the minus sign, so 
that Eq. (4) has the same form as  the equation of motion  mx kx&& = −   for a single 
particle. 
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General Formulation 
 
For a normal mode, each  x  must vary sinusoidally, and all  x 's  must have the same 
frequency.  Therefore we try to find a solution  of Eq. (4) in the form 
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In this expression,  C  is a scalar amplitude factor (determined by initial conditions), and  
a  is a column matrix (or vector) whose elements  a1,  a2  give the ratios of the amplitudes 
of the  x 's  for each normal mode.  For example, if   a2  =  2a1,  the motion of the mass 
with coordinate  x2  is in phase with that of  x1 ,  but with amplitude twice as great. 
 
Taking the second time  derivative of Eq. (5),  we get 

 && cos cos , .x a a= − + = − + =ω ω ϕ λ ω ϕ λ ω2 2C t C tb g b g where  (6) 

To test whether  Eq. (5)  really is a solution of Eq. (4), we substitute  Eqs. (5) and (6)  
into  Eq. (4).  After dividing out the common factor  C cos (ωt + ϕ),  we get  
 
 − = −λMa Ka, or  K M a− =λb g 0.  (7) 

This is a set of simultaneous, homogeneous equations for the elements of the column 
matrix  a.  (This should sound familiar!)  Non-trivial equations exist if, and only if, the 
determinant of the system is zero, that is, when   

 K M− =λ 0.   (8) 

Thus Eq. (5) is a solution of Eq. (4) if, and only if,  the value of  λ = ω2   satisfies Eq. (8). 
This condition is called the secular equation for the system; it is satisfied only for certain 
particular values of  λ,  the roots of the secular equation.   
 
For our example,  we use the  M  and  K  matrices from Eqs. (3).  The corresponding 
secular equation is:  
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This agrees with  Eq. (4)  in Section 8 of these notes (page 8-2). 
 
Equation (8)  is  an algebraic equation for  λ.  The degree of the equation (and hence the 
number of roots) is equal to the number of coordinates of the system  (i.e., the number of 
degrees of freedom).  In some problems two or more roots may be equal.   
 
In our example, there are two roots: 
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The values of  λ  that satisfy Eq. (8) are called eigenvalues.   There are as many values of 
λ as the number of degrees of freedom of the system.   For each value of  λ,  there is a 
corresponding column matrix (or vector),  giving the amplitude ratios for the  x 's  for the 
corresponding normal mode.  We'll call the eigenvalues   λ1,  λ2,  λ3,  L ;  let  a  be the 
column matrix corresponding to  λ1,  let  b  be the column matrix corresponding to  λ2,  
and so on.   The column matrices  a,  b,  c, L are  the eigenvectors corresponding to the 
eigenvalues  λ1,  λ2,   λ3,  L  , respectively.  Then  
 
 K M a K M b K M c− = − = − =λ λ λ1 2 30 0 0b g b g b g, , , .L  (11) 
 
The most general solution of Eq. (4) can now be written as  

 x a b c= + + + + + +C t C t C t1 1 1 2 2 2 3 3 3cos cos cos .ω ϕ ω ϕ ω ϕb g b g b g L  (12) 

The constants  C1,  C2,  C3,  L  and  ϕ1,  ϕ2,  ϕ3  L  depend on the initial positions and 
velocities of the two masses), and the normal-mode frequencies are 

 ω λ ω λ1 1 2 2= =, , .L  

As before, we define the normal coordinates for the system as 

 q1 = C1 cos(ω1t + ϕ1),      q2 = C2 cos(ω2t + ϕ2),        q3 = C3 cos(ω3t + ϕ3), L . (13) 

Then the normal-coordinate transformation can be written as 

 x   =   q1a   +   q2b  +  q3c  +  L  .  (14) 

Now we define  q  to be a column matrix whose elements are the normal coordinates  
q1,  q2,  q3,  L , and we define a square matrix  A  whose columns are the eigenvectors  
a,  b,  c, L .  For two degrees of freedom, 
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The normal coordinate transformation then becomes simply 

 x  =  A q .   (16) 

For our example,  
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which agrees with the results at the end of Section 8  (page 8-5).  (But note that there is a 
lot of arbitrariness in the definition of  A,  because each  q  can be multiplied by an 
arbitrary numerical constant.) 
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This whole procedure is closely related to the discussion of eigenvalues and eigenvectors  
in Section 10 of these notes.  Suppose we multiply both sides of Eq. (7) on the left by  
M−1.  The result is 
 
 (M−1K  −−   λΜΜ −1ΜΜ )a  =  0,          or           (M−1K)a  =  λa. (17) 
 
That is,  a  is an eigenvector of the matrix  (M−1K) ,  with eigenvalue  λ1.  Similarly, from 
Eq. (11),  b  is an eigenvector of   (M−1K)  with eigenvalue  λ2,  and so on. 
 
If our objective is only to find the normal-mode frequencies and vibration patterns, we 
are finished.  Each eigenvalue  λ  is the square of a normal-mode frequency  ω,  and each 
corresponding eigenvector gives the relative amplitudes of motion of the various masses 
for the normal-mode motion with this frequency.   
 
However, there are problems in which we need to determine the constants  C1,  C2,  C3, 
L  and  ϕ1, ϕ2, ϕ3,   L  in Eq. (12)  in terms of the initial values of the coordinates and 
velocities.  This would be fairly simple if the eigenvectors  a,  b,  c, L were all mutually 
orthogonal.  We could then multiply Eq. (12) successively by the transpose of each 
eigenvector, and all but one term on the right would be zero.  We stated in  Section 10  
(page 10-4)  that the eigenvectors of a symmetric matrix are all mutually orthogonal if 
they correspond to distinct eigenvalues.   
 
In our example problem, the matrices  M,  M−1,  K,  and  M−1K  are  all symmetric, and 
the eigenvectors are orthogonal.  But this is an accident resulting from the symmetry of 
our physical system and our choice of coordinates.  In general  M  and  K  are not 
symmetric;  even when they are symmetric, the product  M−1K  in general is not 
symmetric.  So in general the eigenvectors  a,  b,  c,  L  are not mutually orthogonal.  
But it turns out that we can develop generalized concepts of normalization and 
orthogonality that are useful for fitting initial conditions and in other situations. 
 
Normalization of Eigenvectors  
 
We first generalize the concept of normalization.  Because the eigenvectors  a  and  b  
serve only to give the ratios of the amplitudes of motion of the various masses, for each 
normal mode, we are free to multiply each eigenvector by any constant.  It turns out to be 
useful to multiply each eigenvector by a constant such that  
 
 aTMa  =  1,           bTMb  =  1,       cTMc = 1,      and so on.  (18) 
 
(The more usual normalization condition is simply to require that  aTa = 1,  bTb = 1, and 
so on, or,  a a a1

2
2

2
3

2 1+ + + =L ,  and so on.)  When the eigenvectors are multiplied by 
factors such that they satisfy  Eqs. (18),  they are said to be normalized,  in this 
generalized sense.  
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In our example, where 
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,  

the un-normalized  a  gives  aTMa  =  2m.  We multiply  a  by 1 2m;   then  aTMa  =  1.  
So in our example problem, the normalized eigenvector  a  corresponding to the 
eigenvalue  λ1 = k m   is 
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and the  normalized eigenvector   b  corresponding to eigenvalue  λ2 = k k m+ 2 'b g   is 
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(Note that even with the normalization conditions, the eigenvectors are not determined 
uniquely; each one can always be multiplied by  −1.) 
 
Orthogonality of Eigenvectors  
 
In the general case, if  λ1,  λ2,  λ3, L  are all unequal, and if  M  and  K  are symmetric 
matrices (as in our example), then it can be shown that 

 aTMb  =  0,      aTMc = 0,        bTMc = 0,  L  . (21) 

 Note that the usual definition of orthogonality of two vectors a  and  b  is  aTb  =  0,  i.e., 
the scalar product of  a  and  b  is zero.  So  Eq. (21)  represents a generalization of the 
concepts of the scalar product and of orthogonality of two vectors.  We invite you to 
verify that the eigenvectors  a  and  b  in our example problem do satisfy this condition.   
 
If the system has three or more degrees of freedom, then any two eigenvectors that 
correspond to unequal eigenvalues are orthogonal in the sense of  Eq. (21). 
 
To prove Eqs. (21), we start with Eqs. (11): 

 Ka Ma Kb Mb= =λ λ1 2and .  (22) 

Multiply the first equation on the left by  bT ,  and the second on the left by  aT . 

 b Ka b Ma a Kb a MbT T T T= =λ λ1 2, .  (23) 

Take the transpose of the entire first of Eqs. (23): 

 b Ka b MaT T T Te j e j= λ1 .  (24) 

The transpose of a product of matrices equals the product of the transposes in the reverse 
order;  also,  (bT)T  = b,  so  Eq. (24)  can be written 
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 a K b a M bT T T T= λ1 .   (25) 

If  K  and  M  are symmetric, as in our example,  then  KT  = K  and  MT   =  M.  (We'll 
discuss this property later.)  Then  Eq. (25)  can be written. 

 a Kb a MbT T= λ1 .  (26) 

Finally, we subtract  Eq. (26)  from the second of  Eqs. (23): 

 λ λ2 1 0− =b ga MbT .   (27) 

Thus if λ λ2 1≠ ,   then  a MbT = 0 ,  and  the eigenvectors  a  and  b  are orthogonal in 
the generalized sense we have defined.  Similarly, any pair of eigenvectors with unequal 
eigenvalues are orthogonal in this sense. 
 
Initial Conditions 
 
We can now use the orthogonality properties of the normalized eigenvectors to work out 
relations to find the constants  C1,  C2,  C3,  L   and  ϕ1,  ϕ2,  ϕ3,  L   in Eq. (12)  if we 
are given the initial values of the coordinates and velocities, which we denote by  
x x( ) & ( )0 0and  , respectively.  At time  t = 0,  Eq. (12) becomes 
 
 x a b c( ) cos cos cos .0 1 1 2 2 3 3= + + +C C Cϕ ϕ ϕ L  (28) 
 
Similarly, taking the time derivative of Eq. (12) and setting t = 0, we find 
 
 & ( ) sin sin sin .x a b c0 1 1 1 2 2 2 3 3 3= − − − −C C Cω ϕ ω ϕ ω ϕ L  (29) 
 
Now see what happens when we multiply Eq. (28) on the left by  aTM.   We get 
 
 a Mx a Ma a Mb a McT T T T( ) cos cos cos .0 1 1 2 2 3 3= + + +C C Cϕ ϕ ϕ L  (30) 
 
The matrix product in the first term on the right is unity, because of the normalization of 
the eigenvectors, and all the other matrix products on the right are zero because of 
orthogonality .  So Eq. (30) becomes simply 
 
 a MxT ( ) cos .0 1 1= C ϕ   (31) 
 
The same thing happens when we multiply Eq. (29) on the left by  aTM 
 
 a Mx a Ma a Mb a McT T T T& ( ) sin sin sin .0 1 1 1 2 2 2 3 3 3= − − − +C C Cω ϕ ω ϕ ω ϕ L (32) 
 
Using the normalization and orthogonality conditions, we get 
 
 a MxT & ( ) sin .0 1 1 1= − C ω ϕ   (33) 
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Now it is straightforward to solve Eqs. (31) and (33) simultaneously to obtain  C1  and  
ϕ1.  And all the other  C's  and  ϕ's  can be obtained the same way by multiplying Eqs. 
(28) and (29) by  b,  c,  L .   
 
Diagonalization of  K  and  M  Matrices 
 
The eigenvectors and eigenvalues can be used to construct the normal-coordinate 
transformation; this transformation converts both  K  and  M  into diagonal matrices.  
From  Eqs. (11),   

 Ka Ma Kb Mb Kc Mc= = =λ λ λ1 2 3, , , L  . (34) 

We can combine these equations into a single matrix equation.  Let  a1, a2, a3, ...   be the 
elements of the normalized eigenvector  a,  and so on; then define a matrix  A  consisting 
of the normalized eigenvectors as columns;  that is. 

 A = F
HG

I
KJ

a b

a b
1 1

2 2
        (for two degrees of freedom), (35) 

 A =
F

H
GG

I

K
JJ

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

(for three degrees of freedom), (36) 

and so on.  (From here on we assume two degrees of freedom; the generalization to three 
or more degrees of freedom will be clear.) 
 
We can combine  Eqs. (34)  as   

 K M
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a b
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.  (37) 

Also note that  
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Now we define a diagonal matrix  ΛΛ   as 

 ΛΛ = F
HG

I
KJ

λ
λ

1

2

0

0
.       (39) 

Then 

 
λ λ
λ λ

1 1 2 1

1 2 2 2

a b

a b
F
HG

I
KJ = AΛΛ,  

and  Eq. (37)  can be written as  

 KA  =  MAΛΛ .  (40) 
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Now we multiply this equation on the left by  AT: 

 ATKA  =  ATMAΛΛ .  (41) 

Consider the product  ATMA.  In general,  this is equal to  
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m m

m m
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a b
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We see that the first row of  AT   and the first column of  A  give the normalization 
condition for the eigenvector  a.  The first row of  AT   and the second column of  A  give 
the orthogonality relation for  a  and  b,  and so on.  Thus the diagonal elements of the 
product  ATMA  are all  1,  and the off-diagonal elements are all zero.  That is, ATMA is 
equal to the identity (unit) matrix, denoted by  I. 
 
It follows from this result that  

 A MATe jΛ Λ= = F
HG

I
KJ

λ
λ

1

2

0

0
,   (42) 

and,  from Eq. (41), 

 ATKA  =  Λ.  (43) 

(Note that  Λ  is always diagonal, and that the diagonal elements are the eigenvalues.) 
 
Thus we have the fairly astonishing result that the transformation  ATMA  turns  M  into 
the identity matrix  I,  and it turns  K  into a matrix ATKA  =  ΛΛ   that is always diagonal, 
with diagonal elements equal to the eigenvalues. 
 
Example 
 
For the same example we've been discussing all along,  
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' '

' ' ' . (46) 

You should verify  Eqs. (45) and (46)  by carrying out the matrix multiplication, both by 
hand and using Maple. 
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Normal Coordinate Transformation 
 
The normal coordinate transformation is now simply   x = Aq.  We substitute this into the 
equations of motion, Eq. (4): 

 Mx Kx MAq KAq&& , && .= − = −   (47) 

Multiply on the left by  AT: 

 A MAq A KAqT T&& .= −   (48) 

But, as we showed above,    

 A MA I A KAT Tand= = ΛΛ.   (49) 

So  Eq. (48)  becomes 
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 (50) 

We see that the equations for the q's are decoupled; each equation contains only one  q: 

 && , && ,q q q q q q1 1 1 1
2

1 2 2 2 2
2

2= − = − = − = −λ ω λ ω  (51) 

and so forth.  Each  q  corresponds to a single normal mode. 
 
Symmetry of  M  and  K  Matrices 
 
In our example problem, both  M  and  K  happen to be symmetric.  When they are not, 
our orthogonality proof is not valid, and Eqs. (26) and (27) aren't correct.  When the 
equations of motion are obtained from Lagrange's equations, it can be shown that  M  and  
K  are always symmetric.  But when we start with  ΣF = ma, the resulting matrices may 
or may not be symmetric, depending on our choice of coordinates. 
 
Suppose, for instance, that for our example system we let  x1  be the displacement of the 
left mass from equilibrium  and let  x2  be the elongation of the spring  k ' .  Then the 
displacement of the right mass from equilibrium is  x1 + x2  and its acceleration is  && &&x x1 2+  
You can verify that the equations of motion, in terms of these coordinates, are   

 
mx kx k x

m x x kx k k x

&& ' ,

&& && ' .
1 1 2

1 2 1 2

= − +
+ = − − +b g b g   (52) 

In matrix form, 
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+
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'
.   (53) 

The  M  and  K  matrices are   

 M K= F
HG

I
KJ =

−
+

F
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I
KJ

m

m m

k k

k k k

0
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'

'
.  (54) 
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Note that neither of these is symmetric.  The secular equation is 

 K M− =
− −
− + −

=λ
λ
λ λ

k m k

k m k k m

'

'
.0  (55) 

We leave it as an exercise for the reader to show that the eigenvalues are again 

 λ λ1 2
2= = +k

m
k k

m
,

'
,   (56) 

and the normalized eigenvectors are 

 a b A= F
HG
I
KJ =

−
F
HG

I
KJ =

−

F
HG

I
KJ

1 1

0
1

3

1

2
1 1 1 3

0 2 3m m m
, , . (57) 

You should check that again the operation  ATMA  reduces  M  to  the identity matrix  I, 
and that  

 A KA 1T = = F
HG

I
KJΛ

λ
λ
0

0 2
.  (58) 

You can also check the orthogonality of the eigenvectors;  in this case they are not 
orthogonal because  M  and  K  aren't symmetric.  However, we can reformulate the 
problem by adding and subtracting the equations of motion,  Eqs. (52),  to obtain M  and  
K  matrices that are symmetric.  Here's how we do it.  We can add the two original 
equations of motion,  Eqs. (52),  to obtain 

 m x x kx kx2 21 2 1 2&& && .+ = − −b g   (59) 

Now we take this equation and the second of  Eqs. (52)  to be the be the basic equations 
of motion: 

 
m x x kx kx

m x x kx k k x

2 21 2 1 2

1 2 1 2

&& && ,

&& && ' .

+ = − −

+ = − − +

b g
b g b g   (60) 

For these equations, the  M  and  K  matrices are 

 M K= F
HG

I
KJ =

+
F
HG

I
KJ

2 2m m

m m

k k

k k k
,

'
.  (61) 

Now both  M  and  K  are symmetric.  The secular determinant is 

 
2 2

0
k m k m

k m k k m

− −
− + −

=
λ λ

λ λ'
.   (62) 

You are invited to complete this analysis by (1) showing that the roots of the secular 
equation are the same as before,  (2)  obtaining the normalized eigenvector for each 
eigenvalue, and  (3)  showing that the eigenvectors are orthogonal.  Have fun! 


