7 Mapping and Chaos Fall 2003

When aperiodicaly varying driving force is gpplied to a damped oscillating system, is
the resulting forced oscillation aways periodic, with the same period? In the case of the
damped harmonic oscillator (with restoring force - kx and damping force - bv), the
answer isyes. When asnusoidaly varying driving force is applied, the resulting forced
ocillation is adso sinusoidd, with the same frequency asthe driving force. There may
aso be some trangent motion, depending on initid conditions, but this dies out with
time, leaving a forced- oscillation motion whose frequency, amplitude, and phase are
completely predictable. The motion can be predicted as far in the future as we wish.

Aswe have dready seen, the harmonic oscillator isavery specid kind of oscillating
system. When the restoring and damping forces are nonlinear functionsof x and v, the
period of free oscillation depends on amplitude, and the for ced oscillations produced by
aperiodic driving force are not necessarily periodic. In some cases the motion may
gpproach alimit cycle, but in others it may be non-periodic and chaotic. Inthiscaseitis
impossible to predict the long-term behavior, not only becauise the equations of mation
have to be solved numericdly, but aso (and more importantly) because the motion is
extremely sengtiveto initid conditions. No matter how greet the precison of theinitid
conditions, thisprecisonislost in ardatively short time, and the motion becomes
unpredictable.

Thisisalittle gartling. We're accustomed to thinking of Newtonian mechanicsas a
deterministic theory. Giveninitid conditions and a description of the forces, we expect
to be able to predict the resulting motion into the indefinite future, with as great precision
aswe want. How isit possible that chaotic, unpredictable motion can occur in a
determinigtic sysem? Thisand Smilar questions have been sudied intensively only in
the past 30 years or s0; following isa brief sketch of some of the andyticd methods that
have been used.

Periodic Forcing Function

Suppose we have a damped oscillating system with one degree of freedom (such asa
point mass moving aong agraight line). A periodic driving force with period T is
applied. The force need not be snusoida, but it must be exactly periodic. The vector
field plot for the syslem changes with time because of the time-dependent force. But
because the force is periodic, thefidld plot & someinitid time t; looks exactly like the
fiedd plot one period later, at time t; + T.

Ingenerd, if a@ time t; thephasepointisat (X1, V1), then oneperiod later, attime t1 + T
it will be located at adifferent point (X2, v2). Butif the phasepointisat (X1, v1) a any
timethat isan integer number n of periods after t;, that is a any time with the form

t1 + nT, then it must be a point (X2, v2) oneperiod later, attime t; + (n+ 1)T. The
reason this must be true is that the vector fidd patternisthesameattimes t, t+T,
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t + 2T, and so on. The vector field changes in a periodic way, and it goes through the
same sequence of patterns during the intervals betweentimes tand t + T, between t+T
and t + 2T, and so on.

A smple way to think about such motionsis to focus not on the entire phase trgectory

but on the location of the phase point a a series of particular times separated by one

period. If the phasepointis a (X1, V1) a sometime t;, itwill bea (x2, v2) one period
later, a time t; + T. For any givenvdueof ti, (Xz, v2) isafunctionof (xi, v1) often
caled amapping of (x1,v1) to (X2, v2). Symbalicdly, (X2, v2) = f(X1, v1). If weknew
the detalls of this mapping, we could predict the motion for long times by iterating this
mapping for as many periods aswe want: (xs, va) = f(Xz, v2), and so on.

Pursuing this idea, suppose we start at phase point (x1, v1) atime t;, and then note the
location of the phase point at the end of each period following t;. That is, instead of
plotting a continuous curve in the phase plane, we plot a series of points, representing the
phase point at successvetimes t1, t1+ T, t1+2T, t; + 3T, andingenerd t; +nT,
where nisapogtiveinteger. From this pattern we can see the genera nature of the
motion. If successve points converge toward one location, we have alimit cycle. Inthat
case, (Xn+1, Vn+1) approaches (or convergestoward) (xn, vn) after alongtime (i.e, large
n). Thelimiting motion is then arepeating cycle with the same period T asthe driving
force, and the point of convergenceis an attractor.

It may aso happen that after along time the phase point settles down to a pattern of
alternation between two locations,. Thisisagain alimit cycle, but with period 2T and
two attractors. This phenomenon is caled period doubling. There may dso be cycles
with longer periods that are larger integer multiplesof T. Such amotion would show up
as severd pointsin the phase plane, with a definite pattern of repetition.

Findly, if the motion is chaotic, the pattern of points never repesats, corresponding to a
phase trgjectory that goes on endlesdy, never repesting itself. In this case, no point ever
fdls exactly on the location of aprevious point; if it did, the motion would repest
exactly, over and over again, the pattern seen between the two identica points.

ThelL ogistic Map

In the preceding discussion, it is usudly impossible to represent the mapping

(X2, v2) = f(xq, v1) asanactud function, but the discusson may help to show why the
study of mappingsis crucid to the understanding of the response of a nonlinear system to
periodic driving forces. To understand further how mappings can be studied, we focus on
asmpler problem, the behavior of a one-dimensional mapping that mapsapoint x; ona
lineto another point X2 ontheling that is, X2 = f(Xy).

A mapping that has been extensvely studied isthe logistic map. It wasorigindly
introduced as amodd of population growth or decay for a particular species of animdl.
Suppose P, isthe populationinyear n. Assume that the population Pn+1 (intheyear
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(n+ 1) differsfrom P, because of a number of new births, which we assumeto be
proportiond to P, and because of deaths due to limited food supply, assumed

proportiona to P,2. The appropriate equation is then
P.. =aPR - bR’ (1)

n+l

where a and b are postive congantsand n isanon-negative integer..

It is convenient to change the varidble from P, to anormdized varidble x,, limited to
therange O £ x, £ 1. Theusud form of thelogistic map or logistic equation is

X1 = a%,(1- %), 2

where a isapodtive congant. Congdering thefunction ax(1- X), we notethat its
maximum vaueintheinteevd O£ X £1 is a/4. Thustoinsurethat O£ x,, £1
whenever 0 £ x, £1, fordl n, weredrict a totherange O£ a £ 4.

The ample and innocent- appearing mapping represented by Eq. (2) turns out to have an
amazingly rich variety of properties, some of them quite unexpected. Here are some
smple questions we can ask. Can the population ever be constant from one year to the
next, so that Xn+1 = Xn? If itisnot congtant, can it gpproach alimit after many years, so
that x, approachesalimit at large n? If 0, doesthe limit depend on theinitid vaue
Xo? Canthevaridion of X, berandom, with no repeating pattern?

Asaprdiminary exploration, let’s start with afew numerical experiments. We'll choose
avdue of thecongant a and aninitid x, whichwell cal x,, and compute a sequence
of vauesof x, forincreasng integer vduesof n. Thisiseasy to do usng Maple.
Suppose we choose the values a=0.5 and X, = 0.5; we can use the Maple code

restart;

Digits := 5;

a:=0.5; x[0]:=0.5; N:=10;
fornfrom O to N do

X[n + 1] := evalf(a*x[n]*(1 — x[n]));

end do;
Maple gives us this sequence of vaues of x:
X1 = 0.12500 Xg =0.0030885
X2 = 0.54688 x7 = 0.001539%4
X3 = 0.025849 xg =0.00076851
X4 = 0.012590 X9 =0.00038396
x5 =0.0062157 x10 =0.000019191

Clearly, this speciesis headed for extinction; at large n, X, approacheszero. In fact, we
note that if we had taken x, = 0, all the subsequent x’s would have been zero.
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With a=25and x, = 0.5, we get this sequence:

X1 = 0.62500 Xs = 0.59917
X2 = 0.58594 X7 =0.60040
X3 = 0.60652 Xg = 0.59980
X4 = 0.59663 Xg = 0.60010
X5 = 0.60167 X10 = 0.59993

Thefind limiting vaueis clearly 0.60000, and the values of X, dternate on both sides of
the find vaue as the limit is gpproached.

We could have predicted the existence of thislimit without dl the arithmetic. When the
limit is reached, we mugt have Xn+1 =X, fordl n. When a=25, thelimiting vaue of
Xn Must satisfy the equation

X =ax(1- x). (3)

When a =25, thisbecomes x = 2.5x(1 —x). Weinviteyou to verify that the roots of
this quadratic equation are x =0 and x =0.6. Sowe can seewhy x =0.6 isalimit
point, and we can cdl it an attractor. Thisvaueisindependent of the vaue of x, Well
return later to the significance of the other root, x = 0.

1 ] A graphica representation of the logistic map
] offers additiond generd ingght. The function
0.8 y = ax(1- x) isaninverted parabolawith x-
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draight line intersect.

Thepoint x =0 isalways an intersection point. When O £ a £1, the dope of the
parabolaat x =0 islessthan that of the line, so there can be no other intersection point
intherdevatintervd O£ X £1. When 1< a £ 4, thereisasecond intersection
point a& x =1- J/a. Inthe second example above (shownin thefigure), a=2.5and

X =1- 125 =06, asthenumerica caculations aso show.

To condruct asequence of X’s, choose aninitid vaue Xo; inthefigure, we have taken
Xo =0.1. Draw avertica line up to the parabolg; its height is x;. From this point, draw a
horizontd line over to the 45° line. Thelength of thisline (from the verticd axis) isdso
X1. So averticd line through this point, from the horizonta axis up to the parabola has
length x2. Draw ahorizontal line from the parabolato the 45° ling, then averticd line
(representing x3) from the horizontd axisto the parabola, and so on. We can see that
the sequence of x’s approaches the attractor, x = 0.6. We can aso see that the point
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X =0 isnot an attractor; successve x’smove farther and farther from x =0, anditisa
repeller, not an attractor. (If the above description of this construction isn't clear, keep
going over it until you have an “aha” moment.)

Below are graphsfor severd vaduesof a. Weinvite you to practice this construction on
the graphs.
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Now it’stime for another numerica experiment. Wetake a=3.1 and X, =0.5; the
Maple caculation gives us the sequence

X1 =0.77500
X2 = 0.54056
X3 = 0.76988
X4 = 0.54920
X5 = 0.76749

Xe = 0.55319
x7 =0.76623
xg = 0.55527
Xg = 0.76551
X10= 0.55647

Wha's happening? The sequenceis clearly not converging to asingle vaue, but instead
it is converging toward an alternation between two vaues, a around 0.557 and 0.765.

]
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Unlike the preceding examples, with asngle attractor such thet in the limit of large n

we had Xn+1 = Xn, We have two attractors, and two different sequences, such that in the
limit of large N we have xn:+2 =X, for each n. The conditions for this to happen can be
stated as:

X1 = @ (1- X)),
Xz = %11~ X4)
= elax,(1- x,)1- [ax,(1- x,)]}
Whenwe st Xnt2 = Xy, theresult isafourth-degree equation for x. Oneformis
X =-a’x(x- 1)(ax® - ax +1)

Subgtituting the vdue a = 3.1 and solving the resulting equation numericaly using
Maple, we obtain the following roots (to five Sgnificant figures):

0, 0.55801, 0.67742, 0.76457.

We see that the second and fourth roots are the attractors we found previoudy, while the
first and third are repellers. Note that all these numerica vaues are independent of Xo.

This splitting of one attractor into two is called abifurcation. Further numerical
experiments show that it occurs at exactly a=3. When 1<a< 3, thereisasngle
atractor, but when a isdightly greater than 3, there are two.

Continuing our numerica experiments, weincrease a further and observe the results.
It's easier to see what' s happening if we represent the sequence of Xx,’sasagraph, usng
the following Maple code:

restart;

a;=3.2; x[0]:=0.5; N:=20;

for n from O to N do

X[n + 1] := a*x[n]*(1 — x[n]);

end do;

pointlist := seq([n, x[n]], n = 0..N):

plot([pointlist], style = point, symbol = cross, color = black);

This code plots a sequence of points (n, Xn), each represented by asmall cross, for any
chosenvauesof X, and a. We can change the tota number N of points to show more
clearly how quickly or dowly the sequence converges to the atractors.

At gpproximately a = 3.449490 another bifurcation occurs, for vauesof a dightly
larger than this, there are four attractors. At a = 3.35444090 we find still another
bifurcation, beyond which there are eight attractors. Further increasesin a reved an
infinite series of bifurcations. We can show in tabular form where the bifurcations occur.
We number the bifurcationswith anindex k. After thefirg bifurcation (k = 1) there are
2 (=2Y attractors; after the second (k = 2) wefind four (= 22), after the third (k = 3),
eight (= 2°), and so on. We denote the corresponding vauesof a by a.
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k ax 2
1 3.000000 2
2 3.449490 4
3 3.544090 8
4 3.564407 16
5 3.568759 32

Thisis amazing enough, but it gets even better. We notethat with increasing k, the
bifurcation points become closer together. Indeed, they gpproach alimit, which we may

cdl ay alage k. Itturnsout that ay = 3.569946.

When a > ay, ingenerd there are no attractors; instead, the sequence of x,’s fillsan
entire range of vaues of x in arandom and chaotic manner. There are, however, some
gmdl “idands’ (ranges of valuesof a) where there are period-three attractors. These are
caled strange attractors, referring to the fact that they are not well understood.

The decreasing intervals between successve ag’s can be described by theratio

A a ©

It turns out that thisratio gpproachesalimitas k ® ¥; wedenotethislimit by d:

& " %1 - 4669201609 ©

This number, cdled the Feigenbaum constant after its discoverer, is obtained by
numerical caculations of the same sort we have been describing. It can't be computed
from any known formula

Now, findly, here’'s something that' s really remarkable. We ve discussed the
Feigenbaum congtant in the specific context of thelogiticmap x.,, = ax (1- x,). But
it turns out thet for any mapping function X ,, = f(x,) thatis continuousand concave
downward, with only onemaximumintheintevd O £ x £ 1, thelimit defined in Eq.

(5 hasthe same numericd vauel! Thisisatruly amazing result thet is ill not well
understood.

This discussion has shown that even avery ample-looking mapping such as EqQ. (2) can
exhibit aremarkable richness of behavior. Findly, we return to the two-dimensond
phase space with which this whole discusson began. If chaos can occur with the smple
one-dimendona map of Eq. (2), it shouldn't be surprising that it can occur also with the
much more complex two dimensiond maps (X2, Vo) = f(x1, v1) corrsponding to forced
oscillations with periodic driving forces.
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For more complex systems, with n coordinates (i.e., n degrees of freedom), the phase
gpace has 2n dimensions. The coordinates of the phase space are often taken to be the
generdized coordinates and momentathat play a centrd role in the Lagrangian and
Hamiltonian formulations of classical mechanics. If the coordinates are Cartesian
coordinatesof N particles, the coordinates of the phase space are usudly taken to be the
coordinates x, and the momentum components p, = My, Where n ranges from zero
to 3N.



