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When a periodically varying driving force is applied to a damped oscillating system, is 
the resulting forced oscillation always periodic, with the same period?  In the case of the 
damped harmonic oscillator (with restoring force  −kx  and damping force  −bv), the 
answer is yes.  When a sinusoidally varying driving force is applied, the resulting forced 
oscillation is also sinusoidal, with the same frequency as the driving force.  There may 
also be some transient motion, depending on initial conditions, but this dies out with 
time, leaving a forced-oscillation motion whose frequency, amplitude, and phase are 
completely predictable.  The motion can be predicted as far in the future as we wish. 
 
As we have already seen, the harmonic oscillator is a very special kind of oscillating 
system.  When the restoring and damping forces are nonlinear functions of  x  and  v,  the 
period of  free oscillation depends on amplitude, and the forced oscillations produced by 
a periodic driving force are not necessarily periodic.  In some cases the motion may 
approach a limit cycle, but in others it may be non-periodic and chaotic.  In this case it is 
impossible to predict the long-term behavior, not only because the equations of motion 
have to be solved numerically, but also (and more importantly)  because the motion is 
extremely sensitive to initial conditions.  No matter how great the precision of the initial 
conditions, this precision is lost in a relatively short time, and the motion becomes 
unpredictable. 
 
This is a little startling.  We're accustomed to thinking of Newtonian mechanics as a 
deterministic theory.  Given initial conditions and a description of the forces, we expect 
to be able to predict the resulting motion into the indefinite future, with as great precision 
as we want.  How is it possible that chaotic, unpredictable motion can occur in a 
deterministic system?  This and similar questions have been studied intensively only in 
the past 30 years or so; following is a brief sketch of some of the analytical methods that 
have been used. 
 
 
Periodic Forcing Function 
 
Suppose we have a damped oscillating system with one degree of freedom (such as a 
point mass moving along a straight line).  A periodic driving force with period  T  is 
applied.  The force need not be sinusoidal, but it must be exactly periodic.  The vector 
field plot for the system changes with time because of the time-dependent force.  But 
because the force is periodic, the field plot at some initial time  t1  looks exactly like the 
field plot one period later, at time  t1 + T. 
 
In general, if at time  t1  the phase point is at  (x1, v1), then one period later, at time  t1 + T 
it will be located at a different point  (x2, v2).  But if the phase point is at  ( x1, v1)  at any 
time that is an integer number  n  of periods after  t1,  that is, at any time with the form  
t1 + nT, then it must be at point  (x2, v2)  one period later, at time  t1 + (n + 1)T.  The 
reason this must be true is that the vector field pattern is the same at times  t,   t + T,   
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t + 2T, and so on.  The vector field changes in a periodic way, and it goes through the 
same sequence of patterns during the intervals between times  t and  t + T,  between  t + T  
and  t + 2T, and so on. 
 
A simple way to think about such motions is to focus not on the entire phase trajectory 
but on the location of the phase point at a series of particular times separated by one 
period.  If the phase point is  at  (x1, v1)  at some time  t1,  it will be at  (x2, v2)  one period 
later, at time  t1 + T.  For any given value of  t1,  (x2, v2)  is a function of  (x1, v1)   often  
called a mapping of  (x1, v1)  to  (x2, v2).  Symbolically,  (x2, v2)  =  f(x1, v1).  If we knew 
the details of this mapping, we could predict the motion for long times by iterating this 
mapping for as many periods as we want:  (x3, v3)  =  f(x2, v2), and so on. 
 
Pursuing this idea, suppose we start at phase point  (x1, v1)  at time  t1,  and then note the 
location of the phase point at the end of each period following  t1.  That is, instead of 
plotting a continuous curve in the phase plane, we plot a series of points, representing the 
phase point at successive times  t1,   t1 + T,   t1 + 2T,   t1 + 3T,  and in general   t1 + nT,  
where  n is a positive integer.  From this pattern we can see the general nature of the 
motion.  If successive points converge toward one location, we have a limit cycle.  In that 
case,  (xn+1, vn+1)  approaches (or converges toward)  (xn, vn)  after a long time  (i.e., large  
n).  The limiting motion is then a repeating cycle with the same period  T  as the driving 
force, and the point of convergence is an attractor.   
 
It may also happen that after a long time the phase point settles down to a pattern of 
alternation between two locations,.  This is again a limit cycle, but with period  2T  and 
two attractors.  This phenomenon is called period doubling.  There may also be cycles 
with longer periods that are larger integer multiples of  T.  Such a motion would show up 
as several points in the phase plane,  with a definite pattern of repetition. 
 
Finally, if the motion is chaotic, the pattern of points never repeats, corresponding to a 
phase trajectory that goes on endlessly, never repeating itself.  In this case, no point ever 
falls exactly on the location of a previous point;  if it did, the motion would repeat 
exactly, over and over again, the pattern seen between the two identical points. 
 
 
The Logistic Map 
 
In the preceding discussion, it is usually impossible to represent the mapping 
(x2, v2)  =  f(x1, v1)  as an actual function, but the discussion may help to show why the 
study of mappings is crucial to the understanding of the response of a nonlinear system to 
periodic driving forces.  To understand further how mappings can be studied, we focus on 
a simpler problem, the behavior of a one-dimensional mapping that maps a point  x1  on a 
line to another point  x2  on the line, that is,  x2 = f(x1). 
 
A mapping that has been extensively studied is the logistic map.  It was originally 
introduced as a model of population growth or decay for a particular species of animal.  
Suppose  Pn  is the population in year  n.  Assume that the population  Pn+1  (in the year  
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(n + 1)  differs from  Pn  because of a number of new births, which we assume to be  
proportional to  Pn,  and because of deaths due to limited food supply, assumed  
proportional to  Pn

2.  The appropriate equation is then 

 P a P bPn n n+ = −1
2   (1) 

where  a  and  b  are positive constants and  n  is a non-negative integer.. 
 
It is convenient to change the variable from  Pn  to a normalized variable  xn,  limited to 
the range  0 1≤ ≤xn .  The usual form of the logistic map or logistic equation is 

 x ax xn n n+ = −1 1( ) ,  (2) 

where  a  is a positive constant.   Considering the function  a x x( )1 − , we note that its 
maximum value in the interval  0 1≤ ≤x   is  a 4 .  Thus to insure that  0 11≤ ≤+xn   
whenever  0 1≤ ≤xn ,  for all  n,  we restrict  a  to the range  0 4≤ ≤a . 
 
The simple and innocent-appearing mapping represented by Eq. (2)  turns out to have an 
amazingly rich variety of properties, some of them quite unexpected.  Here are some 
simple questions we can ask.  Can the population ever be constant  from one year to the 
next, so that  xn+1 = xn?  If it is not constant, can it approach a limit after many years, so 
that  xn  approaches a limit at large  n?  If so, does the limit depend on  the initial value 
xo?  Can the variation of  xn  be random, with no repeating pattern? 
 
As a preliminary exploration, let’s start with a few numerical experiments.  We’ll choose 
a value of the constant  a  and an initial  x, which we’ll call  xo, and compute a sequence 
of values of  xn  for increasing  integer values of  n.  This is easy to do using Maple.  
Suppose we choose the values  a = 0.5  and  xo = 0.5;  we can use the Maple code  

 restart; 
 Digits := 5; 
 a := 0.5;   x[0] := 0.5;   N := 10; 
 for n from 0 to N do 
 x[n + 1] := evalf(a*x[n]*(1 – x[n])); 
 end do; 

Maple gives us this sequence of values of  x: 

  x1 = 0.12500  x6 =0.0030885 
  x2 = 0.54688 x7 = 0.0015394 
  x3 = 0.025849 x8 = 0.00076851 
  x4 = 0.012590 x9 = 0.00038396 
  x5 =0.0062157 x10 = 0.000019191 

Clearly, this species is headed for extinction;  at large  n,  xn  approaches zero.  In fact, we 
note that if we had taken  xo = 0,  all the subsequent  x’s  would have been zero. 
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With  a = 2.5 and  xo = 0.5, we get this sequence: 

  x1 = 0.62500 x6 = 0.59917 
  x2 = 0.58594 x7 = 0.60040 
  x3 = 0.60652 x8 = 0.59980 
  x4 = 0.59663 x9 = 0.60010 
  x5 = 0.60167 x10 = 0.59993 

The final limiting value is clearly 0.60000, and the values of  xn  alternate on both sides of 
the final value as the limit is approached. 
 
We could have predicted the existence of this limit without all the arithmetic.  When the 
limit is reached, we must have  xn+1 = xn  for all  n.  When  a = 2.5,  the limiting value of  
xn  must satisfy the equation 

 x ax x= −( )1 .    (3) 

When  a = 2.5,  this becomes  x = 2.5x(1 – x).  We invite you to verify that the roots of 
this quadratic equation are  x = 0  and  x = 0.6.  So we can see why  x = 0.6  is a limit 
point, and we can call it an attractor.  This value is independent of the value of  xo   We’ll 
return later to the significance of the other root,  x = 0. 

 
A graphical representation of the logistic map 
offers additional general insight.  The function  
y ax x= −( )1   is an inverted parabola with  x-
intercepts at  x = 0  and  x = 1.  Its maximum 
value, occuring at  x = 1 2,   is  a 4,   and its 
slope at  x = 0  is  a.  (We invite you to verify 
these statements.)  The function  y = x  is a 
straight line at  45o  to the +x  axis.  Any 
possible attractors must occur at points where  
x ax x= −( )1 ,  that is, where these two 
functions are equal, and the parabola and the 
straight line intersect.   

 
The point  x = 0  is always an intersection point.  When  0 1≤ ≤a ,   the slope of the 
parabola at  x = 0  is less than that of the line, so there can be no other intersection point 
in the relevant interval  0 1≤ ≤x .  When  1 4< ≤a ,  there is a second intersection 
point  at  x a= −1 1 .  In the second example above (shown in the figure),  a = 2.5 and  
x = − =1 1 2 5 0 6. . ,  as the numerical calculations also show. 
 
To construct a sequence of  x’s,  choose an initial value  xo;  in the figure,  we have taken  
xo = 0.1.  Draw a vertical line up to the parabola; its height is  x1.  From this point, draw a 
horizontal line over to the  45o line.  The length of this line (from the vertical axis) is also 
x1.  So a vertical line through this point, from the horizontal axis up to the parabola  has 
length  x2.  Draw a horizontal line from the parabola to the  45o  line, then a vertical line 
(representing  x3)  from the horizontal axis to the parabola,  and so on.  We can see that 
the sequence of  x’s  approaches the attractor,  x = 0.6.  We can also see that the point   
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x = 0  is not an attractor;  successive  x’s move farther and farther from  x = 0, and it is a 
repeller, not an attractor.  (If the above description of this construction isn’t clear, keep 
going over it until you have an “aha!” moment.) 
 
Below are graphs for several values of  a.  We invite you to practice this construction on 
the graphs. 

 
Now it’s time for another numerical experiment.  We take  a = 3.1  and  xo = 0.5;  the 
Maple calculation gives us the sequence 

  x1 = 0.77500 x6 = 0.55319 
  x2 = 0.54056 x7 = 0.76623 
  x3 = 0.76988 x8 = 0.55527 
  x4 = 0.54920 x9 = 0.76551 
  x5 = 0.76749 x10= 0.55647 

What’s happening?  The sequence is clearly not converging to a single value, but instead 
it is converging toward an alternation between two values, at around  0.557  and  0.765. 



   7-6  Mapping and Chaos

Unlike the preceding examples, with a single attractor such that in the limit of large  n  
we had  xn+1 = xn,  we have two attractors, and two different sequences, such that in the 
limit of large  n  we have  xn+2 = xn  for each  n.  The conditions for this to happen can be 
stated as: 

 x ax xn n n+ = −1 1( ),  
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When we set  xn+2 = xn,  the result is a fourth-degree equation for  x.  One form is 

 x a x x ax ax= − − − +2 21 1( )( )  

Substituting the value  a = 3.1  and solving the resulting equation numerically using 
Maple, we obtain the following roots (to five significant figures): 

 0,   0.55801,   0.67742,   0.76457. 

We see that the second and fourth roots are the attractors we found previously, while the 
first and third are repellers.  Note that all these numerical values are independent of  xo. 
 
This splitting of one attractor into two is called a bifurcation.  Further numerical 
experiments show that it occurs at exactly  a = 3.  When  1 < a < 3, there is a single 
attractor, but when  a  is slightly greater than  3, there are two. 
 
Continuing our numerical experiments, we increase  a  further and observe the results. 
It’s easier to see what’s happening if we represent the sequence of  xn’s as a graph, using 
the following Maple code: 

 restart; 
 a ;= 3.2;    x[0] := 0.5;    N := 20; 
 for n from 0 to N do 
 x[n + 1] := a*x[n]*(1 – x[n]); 
 end do; 
 pointlist := seq([n, x[n]], n = 0..N): 
 plot([pointlist], style = point, symbol = cross, color = black); 
 
This code plots a sequence of points  (n, xn),  each represented by a small cross, for any 
chosen values of  xo  and  a.  We can change  the total number  N  of points to show more 
clearly how quickly or slowly the sequence converges to the attractors. 
 
At  approximately  a  = 3.449490  another bifurcation occurs; for values of  a  slightly 
larger than this, there are four attractors.  At  a  = 3.35444090  we find still another 
bifurcation, beyond which there are eight attractors.  Further increases in  a  reveal an 
infinite series of bifurcations.  We can show in tabular form where the bifurcations occur.  
We number the bifurcations with an index  k.  After the first bifurcation  (k = 1) there are  
2 (= 21)  attractors;  after the second (k = 2) we find four  (= 22), after the third  (k = 3), 
eight  (= 23),  and so on.  We denote the corresponding values of  a  by  ak. 
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  k    ak 2k
 

  1   3.000000 2 
  2   3.449490 4 
  3   3.544090 8 
  4   3.564407                  16 
  5   3.568759                  32 
 
This is amazing enough, but it gets even better.  We note that  with increasing  k,  the 
bifurcation points become closer together.  Indeed, they approach a limit, which we may 
call  a∞,   at large  k.  It turns out that  a∞ = 3.569946. 
 
When  a  > a∞,  in general there are no attractors;  instead, the sequence of  xn’s   fills an 
entire range of values  of  x  in a random and chaotic manner.  There are, however, some 
small “islands” (ranges of values of  a) where there are period-three attractors.  These are 
called strange attractors, referring to the fact that they are not well understood. 
 
The decreasing intervals between successive  ak’s  can be described by the ratio 
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It turns out that this ratio approaches a limit as  k  →  ∞;  we denote this limit by  δ: 
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This number, called the Feigenbaum constant after its discoverer, is obtained by 
numerical calculations of the same sort we have been describing.  It can't be computed 
from any known formula. 
 
Now, finally, here’s something that’s really remarkable.  We’ve discussed the 
Feigenbaum constant in the specific context of the logistic map  x a x xn n n+ = −1 1( ) .  But 
it turns out that for any mapping function  x f xn n+ =1 ( )   that is continuous and concave 
downward, with only one maximum in the interval  0 1≤ ≤x ,  the limit defined in Eq. 
(5)  has the same numerical value!!  This is a truly amazing result that is still not well 
understood. 
 
This discussion has shown that even a very simple-looking mapping such as Eq. (2) can 
exhibit a remarkable richness of behavior.  Finally, we return to the two-dimensional 
phase space with which this whole discussion began.  If chaos can occur with the simple 
one-dimensional map of Eq. (2), it shouldn’t be surprising that it can occur also with the 
much more complex two dimensional maps  (x2, v2)  =  f(x1, v1)  corrsponding to forced 
oscillations with periodic driving forces. 
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For more complex systems, with  n  coordinates (i.e.,  n  degrees of freedom), the phase 
space has  2n  dimensions.  The  coordinates of the phase space are often taken to be the 
generalized coordinates and momenta that play a central role in the Lagrangian and 
Hamiltonian formulations of classical mechanics.  If the coordinates are Cartesian 
coordinates of  N  particles, the coordinates of the phase space are usually taken to be the 
coordinates  xn  and the  momentum components  pn = mnvn,  where  n  ranges from zero 
to  3N. 
 


