
12    Complex Numbers and Functions Fall 2003 
 
Complex numbers were invented in the context of solutions of algebraic equations.  Some 
quadratic equations, in the form  ax bx c2 0+ + = ,  have two solutions that are ordinary 
(i.e., real) numbers,  that is, two values of  x  that satisfy the equation.  But some 
quadratic equations have no solutions in terms of ordinary numbers.  Two simple 
examples are   

 x2 + 1 = 0         and        x2 − 2x + 2 = 0.  

In the first case, elementary algebra gives  x = ± −1;    in the second, the quadratic 

formula gives x = ± −1 1.  There is no real number whose square is  −1.  So we have 
two choices:  Either the above equations have no solutions, or else we need to broaden 
our concept of number.   
 
Complex Numbers 
 
The second choice is the more useful one.  We define a more general class of numbers, 
called complex numbers, and define algebraic operations and properties for them.  First 
we define an imaginary unit, denoted by  i,  defined as the square root of  −1:  
i i= − = −1 12  and  .   (In Maple the imaginary unit is denoted by capital  I;  in  
a-c circuit analysis it is usually denoted by  j.)  The imaginary unit can be multiplied by a 
real number,  such as  a  or  b.  By definition, this product obeys the commutative and 
distributive rules:  for any real numbers  a  and  b,  ia = ai  and  (a + b)i = ai + bi.  
Any real number multiplied by  i , such as  ai,  is called an imaginary number. 

If  z  =  a  +  i b,  where  a  and  b  are real numbers (i.e., not imaginary), then  z is called 
a complex number.  The real part of  z  is  a,  and the imaginary part of  z  is  b  (not  ib). 
 
Next we define addition and multiplication of two complex numbers  z1  and  z2, 
following these general requirements: 

 (1)  The definitions must be given in terms of the definitions of corresponding  
  operations for real numbers; 

 (2)  When both of the complex numbers happen to be real (i.e., have zero  imaginary  
  part), the definitions must reduce to the definitions for real numbers; 

 (3)  The operations must obey the same rules (associative, commutative, and  
  distributive rules) as the corresponding operations with real numbers. 
 
Following these principles, we define addition and multiplication of two complex 
numbers  z1  and  z2  as follows:  If  a1,  a2,  b1,  and  b2  are real, and 

 z a ib z a ib1 1 1 2 2 2= + = +and ,       then 

 z z a a i b b1 2 1 2 1 2+ = + + +b g b g ,  (1) 

 z z a a b b i a b a b1 2 1 2 1 2 1 2 2 1= − + +b g b g .  (2) 
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With these definitions, it is easy to prove that the sum obeys the associative and 
commutative laws:   

 z z z z z z z z z z1 2 3 1 2 3 1 2 2 1+ + = + + + = +b g b g and ,  (3) 

and that the product obeys the associative, commutative, and distributive laws: 

 z z z z z z z z z z z z z z z z z1 2 3 1 2 3 1 2 2 1 1 2 3 1 2 1 3b g b g b g= = + = +, , .and  (4) 

We leave the proofs of these statements as exercises. 

The absolute value  of  z,  also called the  magnitude of  z,  denoted by  |z|,  is defined as   

 z a b= +2 2 .  (5) 

The complex conjugate of  z, denoted by  z*,  is defined as   

 z* = a − i b.    (6) 

That is, the complex conjugate of  z  has the same real part as  z,  but its imaginary part 
has the opposite sign. 

From these definitions,  zz z* .= 2
  This quantity is always real and non-negative. 

For any two complex numbers  z1  and  z2,   z z z z
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To find the real and imaginary parts of the complex number  
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are real,  multiply numerator and denominator by  the complex conjugate of the 
denominator  (a − ib). 
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Thus the real part of   
1

a ib+
   is   
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,   and its imaginary part is   
−
+
b

a b2 2 .   This 

process is called rationalizing.  Also note that    1 i i= − . 
 
For any complex quantity  C,  the notations  Re(C)  and  Im(C)  are often (including in 
Maple) used to denote the real and imaginary parts, of  C.  In the above example, 
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If  a  and  b  are real, the complex conjugate of  
1 1

a ib a ib+ −
is .  More generally, in 

any complex algebraic expression where all the symbols represent real quantities, the 
complex conjugate can be obtained by replacing  i  everywhere by  (−i).  We invite you to 
prove these statements. 
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Complex Functions 
 
When the real and imaginary parts of a complex quantity are variables, we call the 
quantity a complex variable.  We’ll use the notation  z = x + iy  for  a complex variable  z  
with real part  x  and imaginary part  y,  where  x  and  y  are both real. 
 
We’ll define the sine, cosine, and exponential function of a complex variable,  following 
the same requirements as for the definitions of complex numbers: 

 (1) The definitions must be given in terms of real functions of real variables. 

 (2) When  the complex variable  z  happens to be real  (i.e.,  y = 0), the definition 
  must reduce to the definition of the corresponding real function of a real variable. 

We begin with the exponential function of a complex variable  z = x + iy.  We  define  ez:   

 e z e y i yz x= = +exp cos sin .b g b g   (9) 

We note that this definition satisfies the above requirements;  e x xx , sin , cosand  are 
all real functions of a real variable, and when  y  =  0,  ez  =  ex.  It is also easy to show 
that the exponential function defined in this way satisfies the law of exponents: 

 e e ez z z z1 2 1 2+ =b g .   (10) 

We leave the proof  of this statement as an exercise. 
 
Note that when  z  is purely imaginary (i.e., when  x = 0),  the above definition gives 

 e y i yi y = +cos sin .  (11) 

This equation is called Euler's formula, and it follows very simply from our general 
definition of the exponential function of  z.  Euler’s formula is often “derived” by 
combining the Taylor series expansions for  cos y  and  i sin y.  This derivation is of 
doubtful validity unless it is preceded by some discussion of convergence of series of 
complex quantities.  So we prefer to avoid this approach.       
 
Next we consider the sine and cosine of a complex variable.  The following definitions 
may look a little strange, but we’ll show that they are consistent with the above 
requirements.  We define  sin z  and  cos z  as follows: 

 sin , cos .z
e e

i
z

e ei z i z i z i z

=
−

=
+− −c h c h

2 2
 (12) 

We have to show that these definitions reduce to the familiar ones when  z  is real, that is, 
when  y = 0.  To do this, we first use Eq. (9) to express  eiz  and  e− iz  in terms of real 
functions, also using the fact that  sin (−x) = −sin(x).  (Note that the real part of   
iz = i(x + iy)  is  (−y) and the imaginary part is  x.) 

 e e e x i x e e e x i xi z y i x y i z y i x y= = + = = −− + − − −b g b gb g b gcos sin cos sinand      (13) 
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When these expressions are substituted into the first of Eqs. (12), we get 

 sin cos sinz
i

e e x i e e xy y y y= − + +− −1
2

c h c h  (14) 

When  z  is real,  y = 0  and the right side of Eq. (14) reduces to  sin x,  and Requirement 
(2)  (page 12-3)  is satisfied.  A similar calculation can be made for  cos z  to show that it 
reduces to cos x  when  z  is real. 
 
As a dividend, we note that  when  z  is pure imaginary,  x = 0.  In that case,  Eq. (13) and 
the corresponding equation for  cos z  give 

 sin sinh , cos cosh .i y
e e

i
i y i y

e e
y

y y y y

= − = = + =
− −

2 2
   (15) 

There are many other remarkable relationships among the trigonometric and hyperbolic 
functions. 
 
The Complex Plane 
 
A complex number can be represented as a point in the  x-y  plane, with the real part 
plotted along the  x  axis and the imaginary part along the  y  axis.  This point can also be 
represented in terms of its polar coordinates  (r, θ),  where   

 x r y r z x i y r i= = = + = +cos , sin , cos sin ,θ θ θ θb g  (16) 

 r x y
y
x

= + =2 2 , arctan ,θ   (17) 

The angle  θ  is called the argument or phase of  z,  and  r  is its absolute value.  By 
convention,  r  is always the positive root, and  θ  is taken either in the range from  −π   to  
π   or  from  0  to  2π .   Note that there is an ambiguity in the definition of  θ  in Eq. (17), 
since there are two possible angles for any  given values of  x  and  y.  For example, if   
x = 1  and  y = −1,  Eq. (17) gives the two values  θ = 3π/4  and  θ = −π/4.  Comparison 
with Eq. (16) and the values of  x  and  y  shows that in this case the second value is the 
correct one. 
 
With Euler's formula, Eq. (16) can also be written as 
 z rei= θ    (18) 
Any complex number  z  can be written in this form, called the  polar form of  z. 

Also, for any complex number  z,  
1 1
z r

e i= − θ .   This shows that the argument of  1/z  is 

the negative of the argument of  z. 
 
If  z r e z r ei i

1 1 2 2
1 2= =θ θand ,     then    z z r r ei

1 2 1 2
1 2= +( ) .θ θ    In a-c circuit analysis,  θ  

plays the role of a phase angle;  this important result shows that when two complex 
quantities are multiplied (such as a current  I  and an impedance  Z),  the phases add. 
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Maple Commands 

 
Here are a few useful Maple commands for complex numbers: 
 
 abs(z);     absolute value of  z 

 argument(z);      polar angle of  z 

 Re(z);      real part of  z 

 Im(z);       imaginary part of  z 

 conjugate(z);       complex conjugate of  z 

 convert(z, polar);       converts  z  to polar  (r, θ)  representation 

 evalc( ... );     is used in conjunction with the above commands, to separate the real  

  and imaginary parts of  a complex expression.  When  evalc  is used, Maple  

  assumes that all symbolic quantities (such as  a  and  b  in the examples below)  

  are real quantities, unless they are explicitly defined otherwise (such as  z  in the 

  examples). 

 

Examples: 
 
 z := a + I*b; 

   z := a + ib; 

 evalc(Re(z)); 

   a 

 evalc(abs(z)); 

   a b2 2+  

 evalc(conjugate(z)); 

   a − ib 

 evalc(1/z); 

   
a

a b
Ib

a b2 2 2 2+
+ −

+
 

 evalc(Im(1/z)); 

   
−
+
b

a b2 2  
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