12 Complex Numbers and Functions Fall 2003

Complex numbers were invented in the context of solutions of agebraic equations. Some
quadratic equations, intheform ax* + bx + ¢ = 0, havetwo solutionsthat are ordinary
(i.e, red) numbers, that is, twovauesof x that satisfy the equation. But some
quadratic equations have no solutionsin terms of ordinary numbers. Two Smple
examplesare

x2+1=0 and x°- 2x+2=0.

In the first case, dementary dgebragives x = ++/-1; inthe second, the quadratic

fomulagives x =1+ J-1. Thereisno real number whose uareis - 1. Sowe have
two choices. Either the above equations have no solutions, or €lse we need to broaden
our concept of number.

Complex Numbers

The second choice is the more useful one. We define amore generd class of numbers,
cdled complex numbers, and define algebraic operations and properties for them. First
we define an imaginary unit, denoted by 1, defined asthe squareroot of - 1:
i=+-1and i*=-1. (InMapletheimaginary unit is denoted by capitd 1; in
accreuit anayssit isusudly denoted by j.) Theimaginary unit can be multiplied by a
red number, suchas a or b. By definition, this product obeys the commutative and
digributiverules: for any real numbers a and b, ia=ai and (a + b)i = ai + bi.
Any redl number multiplied by 1, such as ai, iscaled an imaginary number.

If z=a + ib, where a and b arered numbers (i.e, not imaginary), then ziscaled
acomplex number. Thereal part of z is a, and theimaginary part of z is b (not ib).

Next we define addition and multiplication of two complex numbers z and 2z,
following these generd requirements:

(1) Thedefinitions must be given in terms of the definitions of corresponding
operations for real numbers;

(2) When both of the complex numbers happen to bereal (i.e., have zero  imaginary
part), the definitions must reduce to the definitions for red numbers,

(3) The operations must obey the same rules (associative, commutative, and
distributive rules) as the corresponding operations with real numbers.

Following these principles, we define addition and multiplication of two complex
numbeas zz and z asfalows If a3, ay, by, and by, arered, and

z =a, +ib and 2z =a, +ib,, then
z+2 =(a+a)+ib +b), (1)
22, = (a3, - bb) +i(ab, +ab). 2
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With these definitions, it is easy to prove that the sum obeys the associative and
commutative laws

2+(+z)=(a+2)+z  ad z+z=2+z, 3
and that the product obeys the associative, commutative, and distributive laws:
2(zz) = (2%)z, 2% =23, and  z(z+2)=22+22. (@)

We leave the proofs of these statements as exercises.
The absolute value of z aso cdled the magnitude of z, denoted by |z, isdefined as

|4=+a* +b?. (5)
The complex conjugateof z denoted by Z, isdefined as
Z=a-ibh. (6)

That is, the complex conjugate of z hasthe samered part as z, but itsimaginary part
has the opposite sgn.

From these definitions, zz* =|2|°. Thisquantity isawaysreal and non-negative

-4
% |
Tofind the red and imaginary parts of the complex number ﬁ, where a and b

arered, multiply numerator and denominator by the complex conjugate of the
denominator (a- ib).
1 _ 1 a-ib _ a-ib _ a +i_b. 0

a+ib a+ib a-ib a’ +b? a’ + b’ a’ +b?

For any two complex numbers z and 2z, |zz| = |z]4z| and

: a o . -b :
710 IS Pl and itsimaginary part is PEaSE This

processiscalled rationalizing. Alsonotethat 1/i = -1i.

Thusthe real part of

For any complex quantity C, the notations Re(C) and Im(C) are often (induding in
Maple) used to denote the red and imaginary parts, of C. In the above example,

1 a 1 -b
R = and Im| = . 8
e(a+ibj a’ +b? (a+ibj a’ +b? ®)
If a and b arered, the complex conjugate of 1, IS 1_ . Moregengrdly, in
a+ib a-ib

any complex agebraic expresson where dl the symbols represent red quantities, the
complex conjugate can be obtained by replacing i everywhere by (- i). Weinviteyou to
prove these statements.
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Complex Functions

When the redl and imaginary parts of acomplex quantity are varigbles, we cdll the
quantity acomplex variable. W€l usethenotation z=x +iy for acomplex variable z
with red part x and imaginary part y, where x and y areboth real.

We ll define the sine, cosine, and exponentid function of acomplex variable, following
the same requirements as for the definitions of complex numbers:

(1) Thedefinitions must be given in terms of redl functions of red varigbles.

(2) When the complex variable z happensto bered (i.e, y =0), the definition
must reduce to the definition of the corresponding real function of ared varigble.

We begin with the exponentid function of acomplex varidble z=x +iy. We define €&~
e’ = exp(z) = €(cosy +isiny). 9)

We note thet this definition satisfies the above requirements; €, sinx, and cosx are

al red functions of ared variable, andwhen y = 0, € = €. Itisasoeasy to show
that the exponentia function defined in thisway satisfies the law of exponents:

e(zl+22) = ezleZQI (10)

We leave the proof of this statement as an exercise.

Note that when z is purdy imaginary (i.e, when x =0), the above definition gives
€Y = cosy +isiny. (12)

Thisequation is cdled Euler's formula, and it follows very smply from our generd
definition of the exponentid function of z Euler’sformulais often “derived” by
combining the Taylor seriesexpansonsfor cosy and i 9ny. Thisderivetion isof
doubtful vaidity unlessit is preceded by some discussion of convergence of series of
complex quantities. So we prefer to avoid this gpproach.

Next we consider the sine and cosine of acomplex varigble. The following definitions
may look alittle strange, but we' |l show that they are conastent with the above
requirements. Wedefine Snz and cosz asfollows

(-9 .e-lz) : cosz = (¢ +e) : (12)
2i 2

sinz =

We have to show that these definitions reduce to the familiar oneswhen z isred, that is,
when y=0. To do this, wefirst use Eq. (9) to express €'* and e ' intermsof red
functions, dso usng thefact that an (- x) = - 9n(x). (Note that the red part of
iz=i(x+ 1y) is (- y) and theimaginary part is X.)

€2 =¢e"""™ = gY(cosx +isinx) and e'*=¢"" = ¢ (cosx - isinx) (13)
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When these expressions are subgtituted into the firgt of Egs. (12), we get
sinz = %[(e‘y - e)cosx + (e’ + ey)sinx] (14)

When z isred, y =0 andtheright sde of Eq. (14) reducesto sin x, and Requirement
(2) (page 12-3) isstisfied. A amilar calculation can be madefor cosz to show that it
reducesto cosx when z isred.

Asadividend, we note that when z ispureimaginary, x =0. Inthat case, Eqg. (13) and
the corresponding equation for cosz give

e’-¢e .. . e +e”
=isnhy, cosiy =

siniy = = coshy. (15)

There are many other remarkable relationships among the trigonometric and hyperbolic
functions.

The Complex Plane

A complex number can be represented as a point in the x-y plane, with the red part
plotted dong the x axisand the imaginary part dong the y axis. This point can aso be
represented in terms of its polar coordinates (r, ), where

X =rcosq, y=rsing, z=x+iy=r(cosq+ising), (16)

r=x®+y>, q= arctan%, (17)

Theangle q iscdled theargument or phaseof z, and r isitsabsolute value. By
convention, r isdwaysthe postiveroot, and q istaken ether intherangefrom - p to
p or from O to 2p. Notethat thereisan ambiguity in the definition of q in Eq. (17),
since there are two possible anglesfor any givenvauesof x and y. For example, if
x=1and y=-1, Eq. (17) givesthetwo values q=3p/4 and g =- p/4. Comparison
with Eq. (16) and the valuesof x and y showsthat in this case the second valueisthe
correct one.

With Euler's formula, Eq. (16) can dso be written as
z=rd" (18)
Any complex number z can be written in thisform, caled the polar form of z

Also, for any complex number z, % = %e‘ 9. This showsthat the argument of 1/z is
the negtive of the argument of z

If z=rd% and z =r€%, then zz =rre ™% Inacdrcitadyss q
playstherole of aphase angle; thisimportant result shows that when two complex
quantities are multiplied (such asacurrent | and an impedance Z), the phases add.
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M aple Commands

Here are afew useful Maple commands for complex numbers:

abs(z); absolutevdueof z

argument(z); polarangleof z

Re(z); red patof z

Im(2); imeginary part of z

conjugate(z);  complex conjugate of z

convert(z, polar);  converts z topolar (r, Q) representation

evalc( ... ); isusedin conjunction with the above commands, to separate the redl
and imaginary partsof acomplex expresson. When evalc isused, Maple
assumes that al symbolic quantities (suchas a and b in the examples below)
arered quantities, unlessthey are explicitly defined otherwise (such as z inthe
examples).

Examples:

z:=a+I*b;

z:=a+ib;
evalc(Re(2));

a
evalc(abs(2));
evalc(conjugate(z));

a-ib
evalc(1/2);

a L Ib

az +b? a’+b?
evalc(Im(1/2));

_b

a®+b’
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