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These notes should provide a very brief introduction into the necessity and practice of proper unit handling.
Using simple examples and providing some elementary tricks, they should help you to become more familiar
with a subject that (unjustifiedly) receives little attention in class, is the source of much (unnecessary) frustration,
and holds the potential of uncovering many (unexpected) insights resulting from nothing else but expressing the
same concepts in the same units.

I. INTRODUCTION

Units belong to that part of science that has always attracted
fear and loathing. There are so many of them, they can be
transformed in seemingly magical ways (sometimes using the
weirdest conversion factors), and one invariably tends to get
points subtracted when one forgets them.

Yet, units are no invention of physicists.
You want to bake a cake. The recipe states you need 3 sugar.

You are justifiably upset, because it surely matters whether it
is 3 sugar cubes, 3 teaspoons, 3 tablespoons, three ounces,
three gram, or – the doctor forbid! – three cups. How far
away does John live? Two. Two what? Two blocks? Two
miles? Two hours by car? What’s your weight? 165? Say that
in Europe and they consider you obese!

When we want to make precise – quantitative – statements,
we aim to answer questions such as how far, how long, how
heavy, how warm, etc. But there is no naturally obvious length
or time or weight or temperature. So we for instance need
to say so-and-so-many repeats of a pre-agreed-upon length
unit. Trouble is that not everyone agrees what that unit is.
Or depending on the situation some unit is more convenient
than another. You might want to know the distance between
Pittsburgh and Philadelphia in miles, but you’d rather measure
your height in foot and inches. Not only are units inescapable,
unit conversion is the price we pay for convenience in differ-
ent domains of application. Today we are unimaginably better
off than several hundred years ago, when some duke’s elbow
was the rule for length, while in some neighboring duchy it
was another nobleman’s foot. And they had no pocket calcu-
lators back then! So we should be glad and learn how to take
care of the remaining conversions.

Richard Muller uses many different units in his book
“PHYSICS AND TECHNOLOGY FOR FUTURE PRESIDENTS”,
but he is not particularly explicit about how to actually han-
dle them or how to efficiently transform them. Even though
“unit-fluency” is by no means a major goal of our course, be-
ing reasonably comfortable with units certainly helps to better
understand a fair number of issues that we will talk about. I
therefore believe that a short overview might be warranted,
and this is what I aim for in these notes. Not bothering with
units during calculations and then later appropriately plugging
them back in is a frequent shortcut for scientists, and Muller
also follows this strategy occasionally, but one already needs
to understand pretty well what one is doing in order to “cheat”
that way. I feel that for learners this is not the right strategy.
And while I agree that quantitative calculations are neither the

main aim of this book nor of this course, much insight can
be obtained by very simple order of magnitude estimates, but
these still require you to manage units. Moreover, surprising
bits of wisdom can emerge simply from taking two expres-
sions, which embody the same physical quantity (e.g., energy)
but traditionally use different units, and convert them to the
same unit—and thus making them instantly comparable.

II. BASIC NOTIONS

A. “Pure” units

Let’s begin with a simple example. A road trip between
Pittsburgh and Philadelphia is about 300 miles long. How
many kilometers is this? Well, since 1 mile is approximately
1.6 kilometers, this gives about 480 kilometers.

How can we do this formally?3 There are several ways, all
essentially equivalent, but different people might prefer dif-
ferent approaches, so let us suggest two neat formal tricks:

1. The mile-kilometer relation can be expressed in equa-
tion form as 1mi = 1.6 km, so in the expression 300mi
we merely replace the “mi” by “1.6 km”, leading to

300mi = 300× 1.6 km = 480 km .

Notice that the numerical values multiply. If you had a
little bit exposure to algebra and still remember it, you
will notice that units behave in exactly the same way as
the x and y in your algebra textbook.

This might seem awfully laborious, but it works com-
pletely automatically. For instance, how many miles
are 280 kilometers? The conversion equation can be
“solved” for kilometers to give you 1 km = 1

1.6 mi, and
so “km” can be replaced by “ 1

1.6 mi”, leading to

280 km = 280× 1

1.6
mi = 175mi .

We do not need to remember when to multiply and
when to divide—it works out all by itself!

2. If 1mi = 1.6 km, then we can just as well say that
1mi

1.6 km = 1. Indeed, the ratio of two equal length should
be 1. Now it is a well-known mathematical fact that
one can multiply any expression by 1 without changing
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FIG. 1: Unit conversion – taken too far?

it. Unit conversions can then be viewed as multipli-
cation by a cleverly chosen 1, namely, the “conversion
fraction”. In the example from above:

480 km = 480 km × 1 = 480 km × 1mi

1.6 km
= 300mi

cancel

. (1)

Observe that we can again cancel the “km” as if it were
some old x in our algebra book. You might ask how
that works the other way around. If we want to convert
miles into kilometers and if we use the same “conver-
sion fraction”, then we would not get a cancellation:

300mi = 300mi× 1 = 300mi× 1mi

1.6 km
= ?

This calculation is indeed not wrong, but it’s not very
helpful. However, instead of multiplying by 1mi

1.6 km , we
can of course also multiply by its inverse, 1.6 km

1mi , which
is also equal to 1. Then we get

300mi = 300mi× 1 = 300mi× 1.6 km

1mi
= 480 km ,

because now the miles cancel.

You thus see that in the second method you have to
think a little bit what “version” of the “conversion frac-
tion” you need to use. But it’s not really hard: The right
one is the one that helps you to cancel the unwanted
unit. And if it doesn’t cancel, you just need the other
one. This might look slightly more complicated than
the first method, but it is a bit more transparent when
you want to do several unit conversions in one go, as
we will soon see.

Where do we get the conversion equations from in the first
place? Well, sometimes we just need to memorize them or
look them up. For instance, Table I summarizes a few conver-
sions that pertain to the change from imperial units to metric
units. Sometimes we can calculate them from other bits of
information. How many seconds does a year have? Approxi-
mately, a year has 365.25 days (accounting in an averaged way
for leap years). A day has 24 hours, an hour has 60 minutes, a
minute has 60 seconds. That makes 365.25× 24× 60× 60 ≈

3.16 × 107 s in an average year. Many physicists remember
this as “pi times ten to the seven seconds per year”, which is
only half a percent off but easier to memorize (with the nec-
essary sense of nerdy humor).4 How many millimeters to the
yard? Here are the equations: 1 yd = 3′, 1′ = 12′′, 1′′ =
25.4mm. Hence, 1 yd = 1×3×12×25.4mm = 914.4mm,
a little less than a meter. Let’s just see that this also works out
very smoothly with “method 2” described above:

1 yd = 1yd× 3 ft

1 yd
× 12 in

1 ft
× 25.4mm

1 in
= 914.4mm .

Voilà! Three conversions in one line, and everything is com-
pletely transparent.

How many inches in a mile? 1mi = 1760 yd, 1 yd = 3′,
1′ = 12′′, hence 1mi = 1× 1760× 3× 12′′ = 63360′′.5 You
might want to check for yourself that this, again, can be writ-
ten down succinctly using “method 2”. How many kilometers
to 8 miles – see Fig. 1.

B. Compound units

The vast majority of units emerge as the combination of
other units that measure different concepts. For instance, ve-
locity is distance traveled per time taken, so its unit must be a
length unit divided by a time unit. Since there are many ways
to measure distance and many ways to measure time, there are
many × many ways to measure velocity: miles per hour, me-
ters per second, yards per week, . . . But the conversion works
just the same. How many meters per second are 65 miles per
hour? We can independently use the conversions for length
and time, namely 1mi = 1609m and 1 h = 3600 s, giving

65
mi

h
= 65× 1609m

3600 s
= 65× 1609

3600

m

s
≈ 29

m

s
.

Notice that the conventional abbreviation for “miles per hour”,
mph, confusingly suggests that the “miles” and “hours” are
multiplied rather than divided. While “mph” is perfectly fine
as an abbreviation, it is not good as an expression that can
be taken seriously in a mathematical sense, for instance when
working out conversions. In that case we should use mi

h .
Sometimes compound units get their own names. For in-

stance, the speed unit “knot” is one nautical6 mile per hour.
The American and Canadian maritime authorities prefer “kn”
as the abbreviation for the speed unit knot. But “kt” is also
used, and “kts” is sometimes used for the plural. Since a nau-
tical mile is exactly 1.852 km, which is about 15% longer than
the standard (“statute”) mile, 1 kn is about 15% faster than
1mph. In other words, highway cruising speed is about 57
knots. Notice that the speed of planes is also still customarily
measured in knots. This might be because if you’re traveling
substantial distances on the globe, a unit which maps to the
globe (as the nautical-mile-derived knot does) might be con-
venient.

In the lecture we talk a lot about energy and power. Power
is energy expended per time, hence a unit of power is a unit



3

concept non-SI unit symbol relation to other non-SI unit SI unit
length inch ” — 2.54 cm
length foot ’ 12” 30.48 cm
length yard yd 3’ 0.9144 m
length (statute) mile mi 1760 yd ≈ 1.609 km
length (nautical) mile M — 1.852 km

fluid volume US fluid ounce fl oz — ≈ 29.57 mL=29.57 cm3

fluid volume US cup cp 8 fl oz ≈ 236.6 mL
fluid volume US pint pt 2 cp ≈ 473.2 mL
fluid volume US quart qt 2 pt ≈ 946.4 mL
fluid volume US gallon US gal 4 qt ≈ 3.785 L
fluid volume oil barrel bbl 42 USgal ≈ 159 L
fluid volume hogshead 63 US gal ≈ 238.5 L

mass grain gr — ≈ 64.8 mg
mass carat CD ≈ 3.086 gr 200 mg
mass (international avoirdupois) ounce oz — ≈ 28.35 g
mass (international avoirdupois) pound lb 16 oz = 7000 gr ≈ 453.6 g
mass (international avoirdupois) stone st 14 lb ≈ 6.35 kg
mass (international avoirdupois) (short) ton S/T 2000 lb ≈ 907.2 kg

TABLE I: Some commonly encountered non-SI units. Notice the nightmarish conversion factors between different non-SI units.
(As a little side note: Why do we insist on “fluid” for the volume? Why would the “amount” of space – which is what volume measures – depend on whether
it’s occupied by a fluid or a solid? Well, physically that would indeed not matter, but historically people have used different units for fluid and for dry volume.
For instance, a “bushel” is equal to 4 “pecks” and roughly equal to 35.24 liter. But worse: A fluid US pint is roughly equal to 473.2mL, while a dry pint is
about 16% more, namely 550.6105mL. Talk about certified insanity. And we remind you that this is really not the physicists fault!)

of energy divided by a unit of time. Physicists like to mea-
sure energy in “joules” (after James Prescott Joule, an En-
glish physicist and brewer), abbreviated “J”. Hence joules per
second is a unit of power, called “watt” (after James Watt, a
Scottish engineer who contributed major improvements to the
steam engine), abbreviated “W”. You can turn this logic up-
side down and create a unit of energy by taking a unit of power
and multiply it by a unit of time. For instance, 1000 watts is a
kilowatt, kW, and multiplying this by one hour gives the kilo-
watthour, kWh, which therefore must be a unit of energy. The
appropriate math teaches that

1 kWh = 1000
J

s
× 3600 s = 3.6× 106 J = 3.6MJ ,

where the last “M” stands for “mega”, which is the conven-
tional prefix for “one million” (see Table II below). Notice
again that the symbol for seconds, “s”, cancels in this little
calculation. If you like, we have just discovered another con-
version equation. As already mentioned, different units for
the same concept (such as “energy”) abound, and we need to
make peace with it.

C. Non-dimensionless conversions

We might say that Philadelphia is about 5 hours away from
Pittsburgh. How can a distance be equal to a time? Of course
it can not. But this statement makes sense if we can agree
about a velocity with which to multiply the time such as to
get a distance. Or a velocity which we divide the distance by
such as to get a time. If we optimistically assume an average
highway speed of 60 miles per hour, then 60 mi

h multiplied by
5 h gives 300 miles, the distance we have mentioned earlier.

As we have already discussed, not mentioning a unit is lazy
and potentially confusing. This confusion can be even bigger
if one uses statements that require non-dimensional conver-
sions, because there is likely even less agreement on the con-
version factor. Is 60mph a realistic highway speed? Could
there be a traffic jam? What about the time it takes me to get
on the highway? What if I decide to drive faster than the le-
gal limit? To all these objections one might reply that what
really matters for me is how long it takes me to get there, so
a statement of time could be the more appropriate one. This
might very well be the case, but it leaves the undeniable fact
that there are two questions: ”How far is Philadelphia away
from Pittsburgh?”, and ”How long does it take me (by car) to
get from Pittsburgh to Philadelphia?” One question asks for a
distance, the other one asks for a time. We might honor the
speakers intentions by responding to the one he or she actually
asked.

D. Physicist’s follies

That being said, you might guess that physicists never ever
entertain the folly of using non-dimensional conversions. If
so, you guessed wrong. However, physicists have an ex-
cuse that you don’t typically have in ordinary life: The laws
of physics often give you conversion factors that are univer-
sally agreed upon and constant. For instance, special rela-
tivity teaches that the speed of light is a constant of nature
that doesn’t even depend on the frame of reference within
which you measure it. The speed of light is convention-
ally denoted as “c”, and for ordinary mortals the value is
c ≈ 300, 000 km

s ≈ 186, 000 mi
s . Agreeing on this veloc-
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ity as a universal conversion factor between time and length,
we can say that the star Proxima Centauri is about 4.2 years
away. Indeed, the distance that light travels in a year is called
a “light year”, abbreviated “ly”.7 And of course you can now
also say that one nanosecond is about a foot long, because the
speed of light is pretty close to one foot per nanosecond. But
the really freaky physicists don’t stop here. They just define
c = 1, which means not only are they by definition measuring
all speeds in units of the speed of light, they are also mea-
suring all times in units of meter! One nanosecond is approxi-
mately 0.3m (about one foot). And they don’t stop here. They
use Planck’s constant ~, with units of energy times time, as a
universal conversion factor between time and energy, and then
agree to set ~ = 1, thus measuring energy in hertz (which is a
frequency unit). Don’t worry: We’ll not do this in our course.

III. MAGNITUDE PREFIXES

A. The power of powers of ten

A kilometer is 1000 meters. By definition. No, more, be-
cause it actually says so. The “kilo” in front of meter is the
universally accepted prefix to signify “a thousand times”. It’s
the same “kilo” as in “kilogram”, which is 1000 grams. It is
therefore somewhat odd that kilometer is stressed on the “o”,
while kilogram is stressed on the “i”. I don’t know why this is
so, but then I’m not a linguist.

Such prefixes are extremely useful, because they permit us
to create new units which are bigger or smaller than the ones
we are used to, while keeping the conversion factors trivially
easy: Factors of 10 or 1000 or 1,000,000 are so easy to handle
because they require us to do nothing but shifting the decimal
point, or adding zeros. Once we know what a meter is, we
can create a large unit such as kilometer, and any conversion
between meter and kilometer is trivially easy. Compare that
to the conversion between yard and mile, which involves the
out-of-the-world factor 1760! Or we can create a smaller unit,
such as centimeter (“centi” means 1

100 ), and again the conver-
sion is easy. Compare again to the conversion between yard
and inch, which is a factor 36. I can’t do divisions by 36 in
my head, but I can easily divide by 100. Part of the beauty of
the metric system relies on the agreement to use these simple-
to-handle conversions.

Table II gives you a summary of the conventional prefixes
that are useful to know and that we will also use in this class.
Several remarks about that table seem to be in order:

1. The “µ” is the Greek letter “mu”.

2. All of these units have made it into everyday language,
even if you don’t remember seeing them there. The very
big units, for instance, regularly appear in computing
contexts, such as gigabyte or petaflop (but in this con-
text we need to say a bit more about them, see below).
The smallest unit is for instance used to denote the latest
generation of ultra short pulse lasers—the femtosecond
laser). And deca? Isn’t that esoteric? No. Ever heard of

Name Prefix 10··· number name of number
peta P 1015 1,000,000,000,000,000 quadrillion
tera T 1012 1,000,000,000,000 trillion
giga G 109 1,000,000,000 billion
mega M 106 1,000,000 million
kilo k 103 1000 thousand

hecto h 102 100 hundred
deca da 101 10 ten

100 1 one
deci d 10−1 0.1 tenth
centi c 10−2 0.01 hundredth
milli m 10−3 0.001 thousandth
micro µ 10−6 0.000,001 millionth
nano n 10−9 0.000,000,001 billionth
pico p 10−12 0.000,000,000,001 trillionth

femto f 10−15 0.000,000,000,000,001 quadrillionth

TABLE II: Prefixes to signify common factors-of-ten multipliers.

the decalog? These are the ten commandments (scien-
tifically identical to ten monolog(ue)s).

3. “m” can mean “milli”, but it can also mean “meter”.
“T” can mean “tera”, but it can also be “Tesla” (a unit
of magnetic field strength). Doesn’t that give rise to
confusions? Usually not—but indeed it pays off to pay
at least a little bit of attention.

4. Notice that there exist different naming conventions for
big numbers. There is a “short-scale”, which goes like
“million, billion, trillion, quadrillion, . . . ” and a long
scale, which goes like “million, milliard, billion, bil-
liard, . . . ”. The US has always used the short scale, but
in British English the long scale has been in use un-
til 1974.1 There are many countries in the world which
use the equivalent of the short scale, and many countries
which use the equivalent of the long scale. Germany,
for instance, uses the long scale (“Million, Milliarde,
Billion, Billiarde, . . . ”).

5. It is very useful in becoming fluent with these prefixes,
but there is a huge danger involved in doing so. Sleek
little prefixes can completely hide the enormity of the
number they signify. For that matter, the same can hap-
pen with the name of the number itself. Time and again
we can witness journalists in print and on TV to use
the words “million”, “billion”, or “trillion” as if these
are just really very big numbers. But they are not. A
billion is a thousand times bigger than a million. And
a trillion is a thousand times bigger than a billion. A
trillion is a million millions! Take a break, concentrate,
and then let this information completely sink in. And
then contemplate the enormity of a “trillion dollar bail-
out”, compared, for instance, to a “100 million dollar
cut in governmental spending”. In everyday language
we have somehow forgotten to do the math and get the
right amount of goose bumps. And it doesn’t get better
by speaking of “teradollars”.
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B. Powers of 2

As you might know, 210 = 1024 ≈ 1000. Powers of 2
are very useful in computing because of the binary nature
in which all our computing works (on versus off equals one
“bit” of information). But since 210 is approximately equal
to one thousand, it has become customary to also use the
prefix “kilo” when one actually means 1024. Then “kilo-
bytes”, “megabytes”, or “gigabytes” really mean 210 bytes,
220 bytes, and 230 bytes. However, when is this “kilo” re-
ally a factor of 1000, and when is it a factor of 1024? In
the “kilo”-case a proposed circumvent was to say that we’ll
use a capital “K” as a prefix, rather than a lower-case let-
ter “k”. So there would be kB and KB. But that doesn’t re-
ally help when you speak. It was also proposed to speak of
“K-Bytes” or “M-Bytes”, but that evidently hasn’t caught on.
The International Electronic Commission proposes the terms
“kibibyte”, “mebibyte”, “gibibyte”, etc. when they mean the
1024-derived scale.2 Yet, I confess to not having seen them in
use. Ever.

Despite several recommendations and bans coming from
respectable organizations, the situation remains murky. I have
come to believe that the following might be a good rule of
thumb to figure out what might possibly be used in any given
context. If a company wants to sell storage, it uses the usual
power-of-10 notation. A “Gigabyte” USB stick would indeed
hold a billion bytes. However, if they sell you a program that
requires storage capacity on your hard disc, they tend to be
inclined to use the power-of-2 scale, because then the num-
ber looks smaller. In that sense, the same “Gigabyte” would
only be 109

(210)3 ≈ 0.93 “G-Bytes”. Notice that the difference
is still about 69 power-of-ten-megabytes or 65 power-of-two-
megabytes! (And you thought physics is confusing!)

Fig. (2) is the solution to the problem suggested by xkcd.

FIG. 2: Maybe this is how the 103 vs. 210 issue is resolved in prac-
tice? Taken from xkcd.

IV. THE SI SYSTEM

The International System of Units (SI, for the French name
“Le Système International d’Unités”) is the modern metric
system of measurement. Apart from its superiority in the
sciences, it is also of considerable advantage in international
commerce. An almost 100 page summary can be found in a
pdf document on the web-pages of NIST, the National Insti-
tute of Standards and Technology (which, note, belongs to the
Department of Commerce!).? As far as our unit conversions
go, here’s one remarkable paragraph you find in this docu-
ment:

Derived units are defined as products of powers of the
base units. When the product of powers includes no
numerical factor other than one, the derived units are
called coherent derived units. The base and coherent
derived units of the SI form a coherent set, designated
the set of coherent SI units. The word coherent is used
here in the following sense: when coherent units are
used, equations between the numerical values of quan-
tities take exactly the same form as the equations be-
tween the quantities themselves. Thus if only units
from a coherent set are used, conversion factors be-
tween units are never required.? ,Sec.1.4

It is this property of the SI system that Muller makes much
use of in his Textbook. This is (part of) what he means when
he says that physicists like the ‘joule’ or the ‘Kelvin’ because
it makes their equations look simple. Table III lists the 7 base
units on which the SI system rests. Table IV shows, how some
other frequent concepts get their coherent SI unit. It is not
necessary that you memorize these tables! You can use them
as a convenient look-up if you wish.

The metric system is not (yet?) followed in the US, but it
is at least taught. Unfortunately, the admittedly complicated
conversion factors between SI units and imperial units easily
make one think that the metric system is complicated. This is
a regrettable delusion. Once you’re entirely within the metric
system, there are no more yucky factors and life becomes easy.
In particular, any type of calculation that involves large and
small quantities of the same type (say, large and small lengths)
becomes much simpler than the same calculation in imperial
units. But until the magic day when pigs fly, hell freezes over,
and the US goes metric, you need to know the conversions.
Table I summarizes a few of the most frequent ones.
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concept unit symbol definition
length meter m The meter (m) is defined by taking the fixed numerical value of the speed of

light in vacuum, c to be 299,792,458 when expressed in the unit m s−1, where
the second is defined in terms of ∆νCs.

mass kilogram kg The kilogram (kg) is defined by taking the fixed numerical value of the Planck
constant, h, to be 6.626 070 15 × 10−34 when expressed in the unit Js, which
is equal to kg m2s−1, where the meter and the second are defined in terms of c
and ∆νCs.

time second s The second (s) is defined by taking the fixed numerical value of the cesium
frequency ∆νCs, the unperturbed ground-state hyperfine transition frequency of
the 133Cs atom, to be 9,192,631,770 when expressed in the unit Hz, which is
equal to s−1.

electric current ampere A The ampere (A) is defined by taking the fixed numerical value of the elementary
charge, e to be 1.602 176 634 × 10−19 when expressed in the unit C, which is
equal to As, where the second is defined in terms of ∆νCs.

temperature kelvin K The kelvin (K) is defined by taking the fixed numerical value of the Boltzmann
constant kB to be 1.380 649 × 10−23 when expressed in the unit J K−1, which
is equal to kg m2s−2K−1, where the kilogram, meter and second are defined in
terms of h, c and ∆νCs.

amount of substance mole mol One mole (mol) contains exactly 6.022 140 76 × 1023 elementary entities. This
number is the fixed numerical value of the Avogadro constant, NA, when ex-
pressed in the unit mol−1 and is called the Avogadro number.

luminous intensity candela cd The candela (cd) is defined by taking the fixed numerical value of the lumi-
nous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, to
be 683 when expressed in the unit lmW−1, which is equal to cd sr W−1, or
cd sr kg−1m−2s3, where the kilogram, meter and second are defined in terms
of h, c and ∆νCs.

TABLE III: Fundamental SI units, from https://www.nist.gov/pml/weights-and-measures/metric-si/si-units.

concept unit symbol coherent construction simpler form in other SI units
force newton N m kg s−2 —

energy joule J m2 kg s−2 N m
power watt W m2 kg s−3 J s−1

pressure pascal Pa m−1 kg s−2 N m−2

electric charge coulomb C s A —
electric potential difference volt V m2 kg s−3 A−1 W A−1

electric resistance ohm Ω m2 kg s−3 A−2 V A−1

TABLE IV: Examples for some coherently derived SI units, see https://www.nist.gov/pml/special-publication-811/
nist-guide-si-chapter-4-two-classes-si-units-and-si-prefixes.

1 see: http://en.wikipedia.org/wiki/Short scale
2 see: http://physics.nist.gov/cuu/Units/binary.html
3 Don’t ever underestimate the value that the automatism of a math-

ematical process provides. Once you have mastered any such skill,
and it comes as easy as riding a bike, you can essentially “stop
thinking” while you do this. Why would that be good? Because
now you can focus on the parts of the problem that actually require
your brain to concentrate. Ever wondered why physics professors
can do all these complicated things? Here’s the answer: Almost
all the bits and pieces holding the key ideas together are based on
automatic skills they spent years and years honing, while for the
student everything – ideas, techniques, models, examples – is new.

4 Equally nerdy, but also occasionally useful, is 1 yr ≈ 107.5 s,
which is about 0.2% off. Its usefulness lies in the fact that the entire
expression is a simple power of 10.

5 Another curious observation: with about 3% accuracy the number
is equal to 216.

6 The nautical mile was derived as a convenient measure when navi-
gating on the globe. It was originally defined as the speed at which
you travel one minute of arc along any meridian per hour. Since the
circumference of the earth is approximately 40 000 km (a round
value that is no coincidence), there are 360 degrees for the full cir-
cle, and 60 minutes of arc per degree, a straightforward calculation
gives 40 000 km

360×60
≈ 1.852 km for the nautical mile. The SI system?

has defined this value to be the exact conversion factor.
7 Using our newly acquired knowledge that a year is about π × 107

seconds, we see that a light year is 3 × 105 km
s

× π × 107 s ≈
1013 km = 10 Pm, where “P” stands for “peta”, which means
1015 (see Table II). In yet other words, a light year is approximately
ten million billion meters. You would think that astronomers are
happy with such a unit, but they don’t seem to be. They prefer the
“parsec”, which is about 3.26 light years. . .

https://www.nist.gov/pml/weights-and-measures/metric-si/si-units
https://www.nist.gov/pml/special-publication-811/nist-guide-si-chapter-4-two-classes-si-units-and-si-prefixes
https://www.nist.gov/pml/special-publication-811/nist-guide-si-chapter-4-two-classes-si-units-and-si-prefixes

	Introduction
	Basic notions
	``Pure'' units
	Compound units
	Non-dimensionless conversions
	Physicist's follies

	Magnitude prefixes
	The power of powers of ten
	Powers of 2

	The SI system
	References

