### **Carnegie Mellon University**

# Week 3 - Lecture Detailed Component Design

ME 24-688 Introduction to CAD/CAE Tools

# **Lecture Topics**

- Product Engineering Part 2
- Rapid Prototyping
- Designing for Manufacturing Intro
- Designing Styled Components
- Designing Plastic Components
- Case Study Examples

# **Product Lifecycle – Week 3**



ME 24-688 Introduction to CAD/CAE Tools

# **3D Design Use**



ME 24-688 Introduction to CAD/CAE Tools

# **3D Design Use**



ME 24-688 Introduction to CAD/CAE Tools

# **Common Terms**

### Rapid Prototyping

 General term for automatic construction of a physical prototype object on a machine.

### Rapid Manufacturing



### 3D Printing

Process for creating 3D objects from a materials printer. Generally more desktop and affordable machines.



# **3D Printing Applications**

- Concept Models
  - Used to evaluate, optimize, and communicate your designs.
- Functional Prototypes



- Allow you to test in real-world environments and make decisions.

### • End-use Parts

– Build small quantities of parts that are tough enough for production.

# **Benefits of Rapid Prototyping**

### Time Savings

- Improve Design
- Increase Visualization

### Cost Savings / Reduction

- No prototype tooling and parts
- Small Qualities
- Detect design flaws early



# **Validate Design Form**





#### ME 24-688 Introduction to CAD/CAE Tools

# **Functional Prototypes**





ME 24-688 Introduction to CAD/CAE Tools

#### ME 24-688 Introduction to CAD/CAE Tools

# Considerations

### Tolerances

- +/- 0.005 inch or +/- 0.0015 inch per inch whichever is greater

### Build Sizes

- 15" x 14" x 15" (Average)
- 36" x 24" x 36" (Large)

### Material Properties

- Wax Based Materials
- Plastic Based Materials (ABS, Polycarbonate)
- Metal Based Materials (Newer)





#### ME 24-688 Introduction to CAD/CAE Tools

## Companies

### Machine Providers

- Stratasys = <u>www.stratasys.com</u>
- 3D Systems = <u>www.3dsystems.com</u>

On Demand Service Providers

Cubify = <u>http://cubify.com</u>

– Quickpart = <u>www.quickparts.com</u>

– Proto Labs = <u>www.protolabs.com</u>

– RedEye = <u>www.redeyeondemand.com</u>

– Objet = <u>www.objet.com</u>





# **3D Design Use**



ME 24-688 Introduction to CAD/CAE Tools

# **Design Detail and Form**

Complex Parts and Styled Parts





ME 24-688 Introduction to CAD/CAE Tools

# **Plastic Part Modeling Methods**

Solid Shell Method



Surface Thicken Method



ME 24-688 Introduction to CAD/CAE Tools

# **Designing Styles Parts**

 Industrial design products like Autodesk® Alias® support rapid creation and manipulation of complex surfaces and development of Class-A surfaces.



# **Design for Manufacturing (DFM)**

### • What is DFM?

 DFM is the process of proactively designing products to optimize all the manufacturing functions to assure the best cost and quality.

### • Why DFM?

- Lower development cost
- Shorter development time
- Faster manufacturing start to build
- Lower assembly and test cost
- Higher quality

# **Injection Molding Manufacturing**

 The process consists of a mold that normally has two halves that seal together for the filling of melted plastic.





# **Injection Molding Machines**





ME 24-688 Introduction to CAD/CAE Tools

# **Good Plastic Injected Part Design**

- Most critical factor is keep the part wall thickness uniform throughout part.
- Have proper draft angle on part to ease ejection from mold. (0.5 – 2.0 deg.)
- Avoid undercuts requiring slider cores when possible to avoid complexity.
- Avoid sharp corners by adding radius.





ME 24-688 Introduction to CAD/CAE Tools

# **Mold Analysis**

 Autodesk® Moldflow® allows you to simulate the filling of the injection molding process to predict the flow of melted plastic.



# **Moldflow Benefits**

### Identify Possible Defects

- Weld Lines & Sink Marks
- Warpage & Shrinkage

### Optimize Manufacturing

- Ensure Proper Injection Mold Design
- Material Selection

### Simulation

- Use as-manufactured material properties



### **Carnegie Mellon University**

# Computer-Cluster Projects (CP3)

ME 24-688 Introduction to CAD/CAE Tools

# **Cluster Project 1**

 Guides instructions for creation various fillet feature types.



**Carnegie Mellon University** 

ME 24-688 Introduction to CAD/CAE Tools

# **Cluster Project 2**

 Guided instructions for modeling plastic component case.



ME 24-688 Introduction to CAD/CAE Tools

# **Cluster Project 3**

 Guided instructions for modeling plastic component case.





ME 24-688 Introduction to CAD/CAE Tools

# **Problem Set Assignment**

Model detailed plastic molded part with various features.



### **Carnegie Mellon University**

# **Demo Topics**

ME 24-688 Introduction to CAD/CAE Tools

# **Creating Draft Features**

• Draft

Ribbon: Model tab | Modify panel | Draft

Keyboard Shortcut: D

Draft Mini-Toolbar Options





# **Work Features**



ME 24-688 Introduction to CAD/CAE Tools

# **Creating Rest Features**

Rest

Ribbon: Model tab | Plastic Part | Rest

| 🙍 Grill      | anap Fit 🕄    |  |  |  |  |
|--------------|---------------|--|--|--|--|
| 聞 Boss       | 🚯 Rule Fillet |  |  |  |  |
| 🗊 Rest       | 📑 Lip         |  |  |  |  |
| Plastic Part |               |  |  |  |  |

| F | Rest X                  |   |
|---|-------------------------|---|
|   | Shape More              |   |
|   | Profile Solid           |   |
|   | Through All 👻 Thickness | l |
|   | 1 mm 🕨                  |   |
|   |                         |   |
|   | ☑ ৫০ OK Cancel          |   |

# **Creating Grill Features**

Grill



ME 24-688 Introduction to CAD/CAE Tools

# **Creating Boss Features**



#### Ribbon: Model tab | Plastic Part | Boss



**Carnegie Mellon University** 

**O** 

Grill 曾 Boss

🔊 Rest 📑 Lip

Snap Fit

Rule Fillet

ME 24-688 Introduction to CAD/CAE Tools

# **Creating Lip Features**

• Lip

Grill & Snap Fit Boss Rule Fillet

### Ribbon: Model tab | Plastic Part | Lip

| Lip | ×                           |   | Lip       |
|-----|-----------------------------|---|-----------|
|     | Shape Lip                   |   | Shape Lip |
|     | Path Edges                  |   |           |
|     | Guide Face                  |   |           |
|     | Pull Direction              |   |           |
|     | Path Extents                |   |           |
| 2   | ✓ ᠿ□ <sup>1</sup> OK Cancel | ļ |           |
|     |                             | - |           |

# **Creating Snap Fit Features**

Snap Fit

Ribbon: Model tab | Plastic Part |Snap Fit

| Grill        | anap Fit      |  |  |  |  |
|--------------|---------------|--|--|--|--|
| Boss         | 🚯 Rule Fillet |  |  |  |  |
| 🗊 Rest       | 📑 Lip         |  |  |  |  |
| Plastic Part |               |  |  |  |  |



# **Creating Fillet Features**

Revolve





| ) 🗊 🔊 🗸      | F   | ર: .5 |               |  |
|--------------|-----|-------|---------------|--|
| 🔓 0 Selected | Ŧ   | ())▼  | <b>_</b> [2́▲ |  |
| < + ×        | ) ( |       |               |  |

# **Creating Rib Features**



ME 24-688 Introduction to CAD/CAE Tools

# **Solid Body Modeling**

- Multi-body parts are a versatile and powerful approach to skeletal modeling.
- The versatility and power of multi-body parts is expanded with the ability to derive multiple bodies into a single part, conduct Boolean operations between solid bodies, split a solid body into two bodies, and move bodies within the part.



Carnegie Mellon University

ME 24-688 Introduction to CAD/CAE Tools