Carnegie Mellon University

Week 2 – Lecture 3D Part Design

Lecture Topics

- Product Lifecycle Process Review
- Detailed Product Engineering
- Challenges and Purpose
- Evolution of CAD
- General 3D Design Concepts
- Case Study Examples

Product Lifecycle

ME 24-688 Introduction to CAD/CAE Tools

Product Lifecycle – Week 2

ME 24-688 Introduction to CAD/CAE Tools

Product Engineering

 Product engineering following conceptual design is responsible for the continued development of the concept to a full technically complete design.

Product Engineering

Inputs

- Conceptual Design Data
- Project / Design Requirements
- Reference Data

Outputs

- Technical Complete Product Design
- Design Data for Manufacturing
- Bill of Materials (BOM)

Product Engineering Challenges

- Project Schedules
- Design Cost
- Product Quality

Changes (All Types)

Product Cost vs. Time

ME 24-688 Introduction to CAD/CAE Tools

Rule of Ten

 The "Rule of Ten" specifies that it costs 10 times more for an engineering change at the next phase.

Time of Change	Cost of Change
During Design	Х
During Design Testing	10 X
During Process Planning	100 X
During Test Production	1,000 X
During Final Production	10,000 X

Software Tools Used

• CAx

- Computer Aided Design (CAD)
- Computer Aided Manufacturing (CAM)
- Computer Aided Engineering (CAE)

• PLM

- Product Lifecycle Management (PLM)
- Product Data Management (PDM)
- Management of companies intellectual virtual product assets
- ERP
 - Enterprise Resource Planning (ERP)
 - Management of companies deliverable physical product assets

Evolution of Design Tools (CAD)

ME 24-688 Introduction to CAD/CAE Tools

What is 3D Modeling

Creation of a digital model of the real physical object.

3D Design Use

ME 24-688 Introduction to CAD/CAE Tools

3D Downstream Benefits (1 of 3)

CNC Manufacturing

 Programming of Computer Numerical Control (CNC) manufacturing equipment from 3D model geometry to automate manufacturing of production components.

Rapid Prototyping

 3D printing of physical prototype models from 3D model geometry.

3D Downstream Benefits (2 of 3)

Automation

 Fully automated process with low overhead for creating product configurations and design personalization's for clients.

Design Detail and Form

 Ability to design and communicate complex objects that are almost impossible to do without 3D design.

3D Downstream Benefits (3 of 3)

Visualization

 Leveraging of 3D design models for creating realistic visualizations for communicating designs.

Simulation / Analysis

 Ability to analysis 3D design models early and often in the design cycle to optimize the design and identify defects without physical components.

Autodesk Inventor

 Autodesk Inventor 3D mechanical design software includes CAD productivity and design communication tools. The Inventor model is a detail 3D digital prototype that can validate the form, fit, and function of a design

design.

File Types and Relationships

- Part Files (IPT)
- Assembly Files (IAM)
- Drawing Files (DWG / IDW)

Parametric Modeling

- A parametric model is a 3D model that is controlled and driven by geometric relationships and dimensional values.
- With a parametric model, you can change a value of a feature and the part model is adjusted according to that value and existing geometric constraints.

Progression of a Parametric Model

- 1. Initial Sketch 2. Base Sketch Feature 3. Secondary Sketches
 - 4. Secondary Feature from Sketch

5. Add Placed Features

6. Parametric Change with Update

Solid Model vs. Surface Model

Solid Model

Surface Model

Guidelines

- Start your 3D model like you would if you where making it from real materials in most cases.
- Create the model to the perfect world conditions with no tolerances.
- Capture all elements of the model to create a digital version of the real component.

Gefit Livernois Engineering - Case Study

Challenge

Improve Livernois competitive strength in designing machines for the heat exchange equipment market while improving design accuracy and decreasing time to delivery.

Results

- 10% fewer errors overall
- Maintained productivity level despite 20% staff reduction
- 30% reduction in re-work time; 10% overall cost savings on new semi-automatic core builder
- Won contract in part by presenting customer designs in 3D with Inventor

"By showing Inventor presentations to our international customers we don't have to explain what we're doing—they can see it on the screen. Inventor presentations remove the language barrier. Over 50% of our customers reside outside the US."

Larry Schester Mechanical Design Supervisor Gefit Livernois Engineering, LLC United States

Brokk AB - Case Study

Challenge

Build more innovation into products, improve product quality, and get to market faster than competition.

Results

- Reduced time to market by 30%.
- Reduced physical prototypes from 4 to 2.

"The number of design errors has decreased substantially since we started to design with Inventor."

Anders Norberg Design Manager Brokk AB Sweden

Carnegie Mellon University

Computer-Cluster Projects (CP2)

Cluster Project 1

 Guided instructions for modeling clevis mount part.

ME 24-688 Introduction to CAD/CAE Tools

Cluster Project 2

 Guided instructions for modeling flange manifold part.

ME 24-688 Introduction to CAD/CAE Tools

Cluster Project 3

 Guided instructions for modeling air cover part.

Problem Set Assignment

• Model and provide volume of following part.

ME 24-688 Introduction to CAD/CAE Tools

Carnegie Mellon University

Demo Topics

- Assembly files: *.iam files reference part files and are referenced by drawing files.
- Part files: *.ipt files are referenced by assembly files and drawing files.
- Orawing files: *.dwg files reference assembly files and part files.
- Inventor Drawing files: *.idw files are interchangeable with *.dwg files in Inventor and reference assembly and part files.

User Interface

ME 24-688 Introduction to CAD/CAE Tools

Browser

Model Browser

Assembly Browser

Carnegie Mellon University

Marking Menu and Overflow Menu

		Component
Measur	e Distance 🚟	Constraint
(Undo 🖓	B-D Pattern Component
Rotate	Component o	(*) Move Component
	Create	Component
	실 Repeat Place fro	m Content Center
	Create New Fold	er
	Selection	•
\rightarrow	New Sketch	nt Center
	B Replace from Con	ntent Center
	.St Create Pipe Run.	**

ME 24-688 Introduction to CAD/CAE Tools

Navigation Bar

ME 24-688 Introduction to CAD/CAE Tools

Function Key Shortcut Keys

•	KEY	NAME	FUNCTION
•	F2	Pan	Pans the graphics window.
•	F3	Zoom	Zooms in or out in the graphics window.
•	F4	Rotate	Rotates objects in the graphics window.
•	F5	Previous View	Returns to the previous view.
•	F6	Isometric View	Display the isometric view of the model

ME 24-688 Introduction to CAD/CAE Tools

Mouse Viewing Tools

MOUSE FUNCTION NAME
 Click and Drag Mouse Wheel Button Pan
 Roll Mouse Wheel Zoom
 Shift + Click and Drag Mouse Wheel Button Free Orbit
 Double-Click Mouse Wheel Button Zoom All

Basic Sketching Techniques

Constraint Types

Basic Sketching Techniques

• Constraint Types Continued...

Basic Sketching Techniques

• Constraint Types Continued...

Creating and Using Construction Geometry

Ribbon: Sketch tab | Format panel

🕀 Centerline	Head Driven Dimension
Fo	rmat 🔻

Centerline Geometry

Creating Extruded Features

Extrude

Ribbon: Model tab | Create panel | Extrude

Keyboard Shortcut: E

Carnegie Mellon University

Loft

A Rib

Create -

Extrude Revolve

Sweep

S Coil

S Emboss

Derive

Creating Revolved Features

Revolve

Ribbon: Model tab | Create panel | Revolve

Keyboard Shortcut: R

Extrude Mini-Toolbar Options

Carnegie Mellon University

Creating Chamfers

Chamfer

Ribbon: Model tab | Create panel | Chamfer

Keyboard Shortcut: CTRL+SHIFT+K

• Mini-Toolbar: Click edge in active part, Select Chamfer

Chamfer Mini-Toolbar Options • **Chamfer Style** ----N. Distance -A **Distance and Angle** Two Distances OK ~ Apply + Cancel X Selection 🖸 Edges 🔻 Select Face Í S 5 Select Edges

Carnegie Mellon University

Creating Holes

• Hole

Ribbon: Model tab | Create panel | Hole

Keyboard Shortcut: E

		M	odify 🔻	
nole	inet	Draft	🗇 Combine	A Move Bodies
Hole	Fillet	D Shell	🔁 Split	Copy Object
		Chamfer	Thread	Hove Face

Carnegie Mellon University

Creating Rectangular Patterns

Rectangular Pattern

Ribbon: Model tab | Pattern panel | Rectangular

Keyboard Shortcut: CTRL+SHIFT+R

Rectangular Pattern Dialog Box

. 💥
F
•

Pattern	Solid

P	Entire	Solid
---	--------	-------

Pattern Feature

Individual Feature

Features

Solid

13

R

Include Work/Surface
Feature

🖶 Join

A

🚰 Create new bodies

Creating Circular Patterns

Rectangular Pattern

Ribbon: Model tab | Pattern panel | Circular

Keyboard Shortcut: CTRL+SHIFT+O

Circular Pattern Dialog Box

Circular Pattern	Pattern Feature	Pattern Solid
	🖗 Individual Feature 🏼 🌈	Entire Solid
Features	📐 Features	Solid
Solid	🗟 💤 Rotation Axis	Include Work/Surface
	📐 Solid	Feature
Placement	↓	Rotation Axis
• ₆ 5 6 1		Join
OK Cancel >>	<u>ť</u>	Create new bodies

Mirroring Features

Rectangular Pattern

Ribbon: Model tab | Pattern panel | Mirror

Keyboard Shortcut: CTRL+SHIFT+M

• Mirror Dialog Box

Mirror					X
B		Features Mirror Plan Solid	e		
2		OK		Cancel	_ <<
Creatio	on Meth	OK		Cancel	
Creatie Op Ide	on Meth timized ntical	OK		Cancel	

Rectangular

Pattern

Carnegie Mellon University

Circular

0 Mirror

Creating Shell Features

 Shell Ribbon: Model tab | Modify panel | Shell

Shell Dialog Box

Shell More Remove Faces Automatic Face Chain Automatic Face Chain Solids Thickness 0.1 in OK Cancel Vinique face thickness Select Selected 1 Selected 2 mm	Shell		×
OK Cancel <<	Shell More	Remove Faces Automatic Face Chain Solids Thickness 0.1 in	4
Select Thickness 1 Selected 1 mm 1 Selected 2 mm	Unique face thicknes	OK Cancel	<
1 Selected 1 mm ∫ 1 Selected 2 mm ▶	Select	Thickness	
Click to add			

		Chamfer	Thread	Hove Face
Hala	Ellet	🔲 Shell	🛃 Split	🔓 Copy Object
HOIE	Fillet	Draft	伊 Combine	Other Move Bodies
		M	odify 🔻	

Shell Dialog Box

Carnegie Mellon University

ME 24-688 Introduction to CAD/CAE Tools

Creating Sweep Features

Sweep • Ribbon: Model tab | Create panel | Sweep

X

Sweep Dialog Box •

Sweep

Path N

Solid N

Remove Faces

Automatic Face Chain

Solids

