
1

24-682 COMPUTER-AIDED ENGINEERING Spring 11

Carnegie Mellon University

PROBLEM SET 9

Due: 4/6/2011 (Wed) 12:30 PM @ SH 214
Issued: 3/28/2011 (Mon)
Weight: 3% of total grade
Note: * Attach the last page of the problem set as the cover

 page of your paper.

PS9-1 Kinematically Redundant Planar Manipulator: Direct and Inverse Kinematic

The figure below illustrates a four link planar manipulator. Each link has length ݈. The
joint angles, i.e. the relative angles between two adjacent links, are indicated with ݍ
(positive if counterclockwise). The placement of the end-effector is determined by three
parameters: the two coordinates ݔாா and ݕாா and its absolute orientation	ߴாா .

Determine the analytic relationship between a set of joint angles (also called a
configuration) and the end-effector placement (this relationship is called direct kinematic).
Write then a computationally efficient MATLAB function ps9_1_DK() (you will call this
function many times …) that calculates the end-effector placement given the manipulator
configuration:

ሾݔ, ,ாாݕ ாாሿߴ ൌ DK	ሺݍଵ, ,ଶݍ ,ଷݍ ସሻݍ

The inverse problem is to determine the manipulator configuration given an end-effector
placement (this relationship is called inverse kinematic. The four link manipulator is
kinematically redundant in the plane, i.e. there are infinite many configurations that
correspond to the same placement. In other words there are an infinite number of
solutions to this problem:

 ൌ ሾݍଵ, ,ଶݍ ,ଷݍ ସሿݍ ൌ IK ሺݔ, ,ாாݕ ாாሻߴ

2

Use an optimization framework to write a MATLAB function ps9_1_IK() that solves for a
feasible configuration given an end-effector placement while minimizing the norm of the
configuration vector :

minimize:		‖‖ଶ		
subject	to:	ሾݔ, ,ாாݕ ாாሿߴ ൌ f	ሺሻ

The parameter to use for the manipulator are:

l = [1.2 0.8 0.8 0.4]; % Links lengths [m]
qL = -[0.9 1.0 1.0 1.2]*pi; % Joints lower limits [rad]
qU = -qL; % Joints upper limits [rad]

Make sure that your optimization routine constraints the solution to be within the given
joint limits.

In your hand-in directory on AFS, make a new directory called ps9-1 (in lower case) and
upload your MATLAB code. Name the two functions “ps9_1_DK.m” and “ps9_1_IK.m”,
and include the title and your name, “Direct/Inverse Kinematic by YOUR_NAME,” at the
top of your code.

Submit a printout of your MATLAB code. Also, submit the explanation of the optimization
method used -- your explanation should be at least one-page long, and the results given
by your inverse kinematic routine for the following two placements:

 PlaS = [1.8, -0.3, -pi/2]; % Pick up placement
 PlaE = [-0.5, 2.2, pi]; % Drop off placement

Hint: one tool you can use to solve this homework is fmincon() available in the Matlab
Optimization Toolbox. We suggest you to carefully read the help of this built-in function to
well understand how to specify variable boundaries and equality/inequality non-linear
constraints.

PS9-2 Path Planning: Cycle Time Optimization

Your task is to find the near-minimum traveling time trajectory for the manipulator to move
from a pickup placement to a drop off placement while avoiding an obstacle, which is
represented by a planar disk.

The trajectory can be simplified as a sequence of ݊ configurations. Each configuration of

the manipulator is a vector ሺሻ ൌ ቂݍଵ
ሺሻ, ଶݍ

ሺሻ, ଷݍ
ሺሻ, ସݍ

ሺሻቃ. The time required to go from one

configuration to the next in the trajectory can be simplified by:

ሺሻݐ∆ ൌ max
ୀଵ,…,ସ

ቐ
ቚݍ
ሺାሻ െ ݍ

ሺሻቚ

߱
ቑ

where ߱ is the angular velocity of the ݇-th joint. For the purpose of this problem you will
use:

 omega = [1.0 2.0 2.0 3.0]; % Joint angular velocity [rad/s]

Furthermore, to obtain a smooth trajectory, we constraint each step to be smaller than a
given constant value (different for each joint):

3

ቚݍ
ሺାሻ െ ݍ

ሺሻቚ ,ଡ଼ݍ∆ ∀݅ ∈ ሼ1, … , ݊ሽ ∀݇ ∈ ሼ1, … ,4ሽ

Write a MATLAB function ps9_2_T() that calculates a minimum traveling time trajectory
of 10 configurations (݊=10) to connect a pickup placement to a drop off placement while
keeping the joints within their limits and not allowing each step to be larger than the value:

 Dqmax = pi./[12 10 10 8]; % Maximum step size [rad]

Make sure that your objective function, linear constraints, and non-linear constraints are
properly stated

Hint: In this case the variables of your optimization routine are 10 x 4 = 40! This is the
reason why in practical applications local optimization approaches are used instead of a
unique global optimization as we do in this homework.

In your hand-in directory on AFS, make a new directory called ps9-2 (in lower case) and
upload your MATLAB code. Name the file “ps9_2_T.m” and include the title and your
name, “Minimum Traveling Time Trajectory Calculation by YOUR_NAME,” at the top of
your code.

Submit a printout of your MATLAB code, a plot of the trajectory (similar to the picture
below), the list of the calculated configurations for the near-optimal trajectory, and the
near-optimal travelling time calculated using for the pickup placement and the drop off
placement the value given to you in PS9-1.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

x [m]

y
[m

]

4

PS9-3 Path Planning: Cycle Time Optimization with Obstacle Avoidance

In this third part we add an obstacle between the pickup location and the drop off location.
The obstacle is a disk centered at 2 = ݔ m, 2 = ݕ m and with radius 0.7 m. In order to
avoid this obstacle we will add a non-convex additional term to the objective function we
used in PS9-2. This term is called repulsive potential and it is a function of the distance
between the manipulator and the obstacle: the smaller is this distance, the larger
becomes the repulsive potential.

First, write an efficient MATLAB function ps9_3_OD() that returns the smallest distance
between the fixed obstacle and the manipulator in a given configuration. You can use this
simple procedure to calculate the minimum distance between a disk and a manipulator
link:

You can use also your own and possibly more efficient approach to calculate the
minimum distance. Notice that this function should be very efficient since it is going to be
called by fmincon() at each objective function evaluation.

Second, write a MATLAB function ps9_3_TO() that calculates a minimum traveling time
trajectory of 10 configurations to connect a pickup placement to a drop off placement
while keeping the joints within their limits, not allowing each step to be larger than the
maximum value defined in PS9-2, and avoiding the obstacle.

5

Hint: the repulsive component of your objective function can be (not mandatory, though):

ߛ ∙
1

max ቄd ቀሺሻቁ െ d୍, ϵቅ

ୀଵ

where ߛ is a damping factor, ϵ is a positive number to avoid a division by zero, d୍ is a

safety distance you want to keep from the obstacle, and d ቀሺሻቁ is the output of the

function ps9_3_OD() you implemented in PS9-2. Notice that if d ቀሺሻቁ െ d୍ becomes

less than ϵ , you may want to slightly modify the above expression to have a linear
behavior (instead of constant) of the repulsive potential to avoid local minima.

In your hand-in directory on AFS, make a new directory called ps9-3 (in lower case) and
upload your MATLAB code. Name the two files “ps9_3_OD.m” and “ps9_3_TO.m” and
include the title and your name, “Minimum Traveling Time Trajectory Calculation with
Obstacle by YOUR_NAME,” at the top of your code.

Submit a printout of your MATLAB code, a plot of the trajectory (similar to the picture
below), the list of the calculated configurations for the near-optimal trajectory, and the
near-optimal travelling time calculated using for the pickup placement and the drop off
placement the value given to you in PS9-1.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

x [m]

y
[m

]

6

EXTRA Morphology Optimization (10 bonus points)

In this last part your task is to optimize the morphology of the manipulator in order to
minimize again the cycle time. In other words, the manipulator has to travel from the
pickup placement to the drop off placement, to avoid the obstacle, and to perform the task
in the shortest time as possible. The question is: what are the best links dimensions to do
that?

Hint: Now the number of variables of the optimization problem is going to be 10x4 + 4 =
44. You can use the code you wrote for PS9-3 to solve the problem. You just need to
consider the link lengths not as parameter but as variables of the problem.

Write a MATLAB function ps9_4_TOL() that calculates a minimum traveling time
trajectory of 10 configurations to connect a pickup placement to a drop off placement
while keeping the joints within their limits, not allowing each step to be larger than the
maximum value defined in PS9-2, and avoiding the obstacle defined in PS9-3. The limits
to use for the link dimension are:

 lL = [0.8 0.4 0.4 0.2]; % Link lower limits [m]
 lU = [1.8 1.2 1.2 0.6]; % Link upper limits [m]

In your hand-in directory on AFS, make a new directory called ps9-4 (in lower case) and
upload your MATLAB code. Name the file “ps9_4_TOL.m” and include the title and your
name, “Morphology optimization by YOUR_NAME,” at the top of your code.

Submit a printout of your MATLAB code, a plot of the trajectory (similar to the plots you
did for PS9-3), the list of the calculated configurations for the near-optimal trajectory, the
near-optimal travelling time calculated, and your optimal four link lengths using for the
pickup placement and the drop off placement the value given to you in PS9-1. Submit also
a brief description to illustrate how the link lengths have changed, and how the traveling
time has improved compared to your previous results in PS9-3?

7

 PS9

The first letter of _____________________ ________________________
your LAST name First Name Last Name

How many hours did you spend to complete this problem set? __________ Hours

How many no-penalty late days do you want to use for this problem set? ________

PS9-1
(30 pts)

PS9-2
(30 pts)

PS9-3
(40 pts)

Following
Instructions

(5 pts)

Bonus Points
(10 pts)

Total
(110 pts)

24-682 COMPUTER-AIDED ENGINEERING Spring 11

Carnegie Mellon University

PROBLEM SET 9

Due: 4/6/2011 (Wed) 12:30 PM @ SH 214
Issued: 3/28/2011 (Mon)
Weight: 3% of total grade
Note: * Attach the last page of the problem set as the cover

 page of your paper.

