24-352 Dynamic Systems and Control: QUIZ 7

Close book and notes. You have 45 minutes to complete the following questions.

NAME:	20 8 mm 1 2001
INAIVIE:	30 April 2001

A 1st order system has the transfer function, H(s) = 100/(s + 2).

What is the time constant τ for this system?
Suppose we controlled this system using the strategy shown below.

- 2. What is the name of this type of control approach?
- 3. What is the closed loop transfer function for this system?
- Suppose we have a unit step function input, i.e. x_i(t) = H(t). What value of K will result in a steady state error of 5%, i.e. x_i(∞) x_o(∞) = 0.05?
- 5. For the step function input what are the location(s) of the pole(s) of X_o(s) and is the system stable?
- 6. What is the time constant for the closed loop system?
- 7. How would you change the block diagram given above if you wanted to use integral control?
- 8. What would be the advantage of integral control in this application?

ANSWERS

f(t)	F(s)	
H(t)	1/s	
e^{-at}	1/(s + a)	

Total Points = 14

(1) 3.
$$T(S) = \frac{100K}{S+2(1+\frac{100K}{S+2})} = \frac{100K}{S+2+100K}$$

(5) where
$$X_0(S) = \frac{1}{S}$$
, $\frac{100 \text{K}}{S + Z + 100 \text{K}}$