Dynamic Systems and Control: QUIZ - 4 April 24-352

Close book and notes. You have 45 minutes to complete the following questions.

NAME:	4 April 200
111111111111111111111111111111111111111	4 April 200

Operational Amplifier of Figure 1

Suppose you have the op amp circuit shown in figure 1. The impedance of element 1 is $Z_1(s)$ and the impedance of element 2 is $Z_2(s)$.

- 1. What assumptions do you use in analyzing the response of a circuit with an "ideal" op amp?
- 2. For this circuit, how is the Laplace transform of the output voltage related to the Laplace transform of the input voltage?
- 3. How would the output voltage, eo(t), be related to the input voltage, ei(t), if elements 1 and 2 had the properties described in the Table? (show your answer in the table).
- B. Operational Amplifier of Figure 2

Consider the op amp circuit shown in Figure 2. How is the output voltage related to the input voltages $e_1(t)$ and $e_2(t)$?

Element 1	Element 2	$e_{o}(t)$
Resistor, R ₁ =1	Resistor, R ₂ =2	Mary State
Capacitor, C ₁ = 0.5	Resistor, R ₂ =2	
Inductor, L ₁ =2	Resistor, R ₂ =2	The state of

Figure 1

 $\frac{e_{k}'-e_{o}}{R_{3}} \Rightarrow e_{o}=-R_{3}\left(\frac{e_{1}}{R}+\frac{e_{2}}{R}\right)$