24-352 DYNAMIC SYSTEMS & CONTROL

HOMEWORK ASSIGNMENT #5

DUE 2/21/01

PROBLEMS

From the textbook 7.3, 7.5

- 1. Use Laplace transforms to find y(t) where y(0) = 0, y'(0) = 0 and $y''(t) + k y(t) = f_0 \delta(t)$
- Suppose y(t) satisfies the equation:
 y"(t) + y'(t) + 25 y(t) = f(t)
 subject to the initial conditions: y(0) = 0 and y'(0) = 0.

Use Laplace transforms to do the following exercises

- a. Find and plot the solution, $y_i(t)$, when f(t) is the unit impulse $\delta(t)$.
- b. At what value of time t_0 is y_1 first equal to zero? $(t_0 > 0)$.
- Find and plot the solution, y_H(t), when f(t) is the unit step function H(t).
- d. From the plot determine the time t_M at which y_H is maximum. What is the maximum value of y_H? How does t_M compare with t₀ from part b?
- e. Explain the results that you got in part d.