## 24-352 DYNAMIC SYSTEMS & CONTROL

#### HOMEWORK ASSIGNMENT #1

DUE 1/24/01

#### **PROBLEMS**

### Kinetic Energy

- a. Use the concept of equivalent kinetic energy to find the equivalent mass for the system shown in Fig. 1. That is, find  $M_{\epsilon}$  in terms of  $m_1$ ,  $m_2$ , L1 and L2 so that the kinetic energy of the lever system is equal to  $\frac{1}{2}M_{\epsilon}(\dot{x})^2$ .
- b. Use kinetic energy to find the equivalent moment of inertia with respect to  $\theta_i$  of the system shown in Fig. 2



# 2. Potential Energy

- a. Use the concept of equivalent potential energy to find the equivalent linear stiffness with respect to x for the system shown in Fig. 3. That is, find  $K_{\epsilon}$  so that the potential energy stored in the system is equal to  $\frac{1}{2}K_{\epsilon}(x)^{2}$ .
- b. Use the concept of equivalent potential energy to find the equivalent torsional stiffness with respect to  $\theta$  for the systems shown in Figures 4 and 5.

