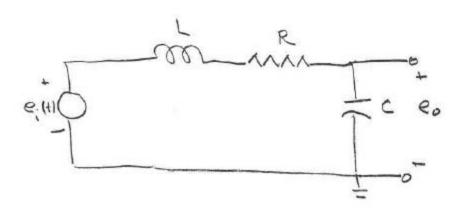
24-352 DYNAMIC SYSTEMS & CONTROL

HOMEWORK ASSIGNMENT #10

DUE 4/4/01


PROBLEMS

From the textbook

10.20 and 10.21

- 1. Suppose you have the circuit shown below.
 - a. What is its impedance?
 - b. What is the transfer function, i.e. the ratio E_o(s)/E_(s)?
 - c. Suppose L = 1 and C = 1. Suppose e_i(t) = H(t) where H is the Heaviside step function.
 - i. What does the output voltage look like as a function of time if R = 1?
 - ii. What value of resistance would result in an overshoot of 10%?

 Plot the response as a function of time for this value of R. What is the response time t_R, i.e. the time at which e_o(t) first equals 90% of its steady state value?
 - Repeat part ii for an overshoot of 2%. (The response time is the time at which it equals 98% of its steady-state value).
 - iv. How much slower is the system's response, i.e. what is the percentage increase in the response time when the overshoot is reduced from 10% to 2%?
 - v. How does your answer to iv depend on the values of L or C?

