## **Quiz #7 Solutions**

16-57. If the block at C is moving downward at 4 ft/s, determine the angular velocity of bar AB at the instant shown.

K inematic Diagram: Since link AB is rotating about fixed point A, then  $v_B$  is always directed perpendicular to link AB and its magnitude is  $v_B = \omega_{AB} r_{AB} = 2\omega_{AB}$ . At the instant shown,  $v_B$  is directed towards the negative y axis. Also, block C is moving downward vertically due to the constraint of the guide. Then  $v_C$  is directed toward negative y axis.

Velocity Equation: Here,  $\mathbf{r}_{C/A} = \{3\cos 30^{\circ}\mathbf{i} + 3\sin 30^{\circ}\mathbf{j}\}$  ft =  $\{2.598\mathbf{i} + 1.50\mathbf{j}\}$  ft Applying Eq. 16 – 16, we have

$$\mathbf{v}_C = \mathbf{v}_B + \mathbf{\omega}_{BC} \times \mathbf{r}_{C/B}$$
  
-4j = -2 $\omega_{AB}$ j + ( $\omega_{BC}$ k) × (2.598i + 1.50j)  
-4j = -1.50 $\omega_{BC}$ i + (2.598 $\omega_{BC}$  - 2 $\omega_{AB}$ ) j

Equating i and j components gives

$$0 = -1.50\omega_{BC}$$
  $\omega_{BC} = 0$   
 $-4 = 2.598(0) - 2\omega_{AB}$   $\omega_{AB} = 2.00 \text{ rad/s}$  Ans

