24-311 NUMERICAL METHODS Fall 03

Carnegie Mellon University

PROBLEM SET 13

Issued:	11/23/03
Due:	12/3/03 Wed 1:00 pm
Weight:	4 % of total grade

Finite-Difference Solution for an Elliptic PDE

Solve for the temperature distribution of the heated square plate in the following figure using the finite-difference method. The size of the plate is 4 cm by 4 cm, and the following boundary conditions are imposed:

- The top edge of the square has a fixed temperature, $120^{\circ}C$.
- The right-hand side edge of the square has a fixed temperature, $35^{\circ}C$.
- The left-hand side edge of the square has a fixed temperature, $95^{\circ}C$.
- The bottom edge is insulated.

- (1) Define a 5 by 5 grid points over the square plate, and denote the temperature at x = i cm and y = j cm as T_{ij} . For example the temperature at the center of the plate is denoted as T_{22} . Among the 25 temperature variables at the 25 grid points, which ones are known from the boundary conditions? What are these known temperatures?
- (2) How many unknown temperatures are there? Derive the n by n matrix equation, where n is the number of unknown temperatures, to be solved for finding the steady temperature solutions.
- (3) Solve the matrix equation by using a mathematical package, and make a surface plot and a contour plot that show the temperature distribution over the plate.
- (4) What are the heat flux vectors at (x, y) = (2, 2) and (x, y) = (2, 0)? Assume that: $k\rho C = 1$.

PS13

The first letter of your LAST name

First Name

Last Name

(20 pts)	(20 pts)	(30 pts)	(30 pts)	(100 pts)

24-311 NUMERICAL METHODS Fall 03

Carnegie Mellon University

PROBLEM SET 13

Issued:	11/23/03
Due:	12/3/03 Wed 1:00 pm
Weight:	4 % of total grade