ME 24-221 THERMODYNAMICS I

Solutions to Quiz 8 December 8, 2000 J. Murthy

Given:

Air Standard Brayton Cycle

Cycle: 1-2-3-4

Constant Specific heats

State 1: $T_1 = 300 \text{ K}$; $P_1 = 100 \text{ kPa}$ State 3: $T_3 = 1500 \text{ K}$; $P_3 = 1000 \text{ kPa}$

To Find: Temperature at the end of isentropic compression: $T_2 = ?$ Heat transfer to air in the high-temperature heat exchanger $q_H = q_{2-3} = ?$

Solution:

Using constant specific heats, $C_{po} = 1.004$ kJ/kg.K, $C_{vo} = 0.717$ kJ/kg.K and $k = \frac{C_{po}}{C_{vo}} = 1.4$ Since process 1-2 is isentropic,

$$\frac{T_2}{T_1} = \left[\frac{P_2}{P_1}\right]^{\left(\frac{k-1}{k}\right)} = \left[\frac{1000}{100}\right]^{\left(\frac{0.4}{1.4}\right)} \Rightarrow T_2 = (300)(1.9307) = 579.2 \text{ K} ------(1)$$

$$q_H = q_{2-3} = h_3 - h_2 = C_{po}(T_3 - T_2) = 1.004(1500 - 579.2) = 924.48$$
kJ/kg -----(2)

The P-V and T-S diagrams for the process are shown below.

