ME 24-221 THERMODYNAMICS I

Solution to Quiz #3 September 29, 2000 Instructor: Dr. Murthy

<u>Given</u> :	(a) Piston cylinder assembly: Carbon Dioxide (b) State 1: $m = 0.1 \text{ kg}$; $P_1 = 0.738 \text{ MPa}$; $T_1 = 1247.35^{\circ}c$ (c) State 2: $P_2 = 0.1 \text{ Mpa}$ (d) 1-2 is isothermal process
<u>To Find:</u>	Z_1 and Z_2 at the initial and final states respectively. Also W_{1-2} .
<u>Solution:</u>	To find Z we use Figure D.1. We need P_r and T_r . From Table A.2, we get the critical constants for Carbon Dioxide.
	$T_{c} = 304.1 \text{ K}$ and $P_{c} = 7.38 \text{ Mpa}$
	$\begin{split} T_{r1} &= T_1/T_c = (1247.5 + 273.15)/304.1 = 5 \\ P_{r1} &= P_1/P_c = 0.738/7.38 = 0.1 \\ T_{r2} &= T_{r1} = 5 \text{ (Isothermal. Hence } T_1 = T_2) \\ P_{r2} &= P_2/P_c = 0.1/7.38 = 0.01355 \end{split}$
	From Fig. D.1, $Z_I = 1$ $Z_2 = 1$

Since the compressibility factor in both the states is equal to unity, we can use ideal gas approximation at states 1 and 2.

 $W_{1-2} = P_1 V_1 ln(P_1/P_2)$ (Work done for an isothermal process)

Since ideal gas approximation is valid, $V_1 = (mRT_1)/P_1$ Where R is the specific gas constant for CO₂. From Table A.5, R = 0.1889 kJ/kg-K

 $V_1 = (0.1)(0.1889)(1520.5)/0.738*10^3) = 0.03892 \text{ m}^3$

 $W_{I-2} = (0.738 \times 10^3)(0.03892)\ln(0.738/0.1) = 57.4107 \text{ kJ}$

Since work is positive, it is done by the system.