
Last time, we talked about events. Now, we introduce some basic definitions
and theorems about probability.

1 More Examples

1.1 Birthday Paradox

Let us suppose that we have a set of k people, and each of them were born on
one of 365 days in the year (assume no one was born on Feb. 29).

Then Ω = [365]k, under the uniform distribution. Let E be the event where
no two people have the same birthday. What is P (E)?

There are 365!
(365−k)! ways of listing k different birthdays. So the probability

is 365·364·····(365−k+1)
365k

. If k is even 23 or higher, this means that there is a
probability of less than 1/2 that two people have the same birthday!

1.2 Bernoulli Trials

Suppose we wish to flip a loaded coin (heads with probability p) until we get
heads. Then Ω = {1, 2, . . . }, where each outcome is the number of flips required.
What is P (ω)? We need ω flips iff the first ω − 1 are all tails, and the ωth is
heads – this has probability (1− p)ω−1p.

2 Boole’s Inequality

Boole’s inequality in some ways is so obvious that it makes one wonder how
someone got name recognition for proving it. Yet, it is a very powerful result
because the hypotheses required are so weak. Later, we will discuss indepen-
dence, and show many nice results when certain events are independent. Boole’s
inequality does not require indepenence – that’s why it’s so powerful.

Definition 2.1. Let A1, A2 be events. We define P (A1 ∨ A2) = P (A1 ∪ A2)
and P (A1 ∧A2) = P (A1 ∩A2).

Theorem 2.2 (Boole’s Inequality). If A1, . . . , Am are events in a probability
space Ω, then :

P (A1 ∨A2 ∨ · · · ∨Am) ≤
m∑
i=1

P (Ai)

Proof. The LHS of the formula is: ∑
ω∈
⋃m
i=1 Ai

P (ω) (1)

And the RHS is
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m∑
i=1

∑
ω∈Ai

P (ω) (2)

Each ω in
⋃m
i=1Ai appears exactly once in (1), and appears at least once in

(2). Since P (ω) is always nonnegative, it follows that (2) is at least as large as
(1).

3 Conditional Probability

Definition 3.1 (Probability of A given B). Let A and B be events in a
probability space. We define P (A|B), the probability of A given B, to be P (A∧
B)/P (B).

This definition makes sense, since it tells us how often A occurs, if we know
that B occurs – if B occurs, and A occurs also, then it is the case that A ∧ B
occurs.

Fact 3.2. Suppose that P (A1|A2) > P (A1). Then P (A2|A1) > P (A2). The
same holds if we use “<” or “=”instead of “>”

Proof. Here, only the “>” case is proved. Suppose that P (A1|A2) > P (A1).
Then it follows that P (A1∧A2)

P (A2) > P (A1). Thus, P (A2∧A1)
P (A1) > P (A2), and we are

done.

This fact allows s to make the following definition without worrying about
the order of A1 and A2:

Definition 3.3 (Independent Events). Let A1 and A2 be events in Ω:

1. A1 and A2 are independent if P (A1|A2) = P (A1).

2. A1 and A2 are positively correlated if P (A1|A2) > P (A1)

3. A1 and A2 are negatively correlated if P (A1|A2) < P (A1).

4. A1 and A2 are dependent if they are not independent.

Theorem 3.4. If A1 and A2 are independent events, then P (A1 ∧ A2) =
P (A1)P (A2).

Proof. By independence, we have:

P (A1) =
P (A1 ∧A2)
P (A2)

Therefore,

P (A1)P (A2) = P (A1 ∧A2)

2



Examples:

1. Rolling two dice, x1 and x2. Let A be the event x1 = 3 and B be the
event x2 = 4. Then A and B are independent.

2. However, if A is x1 ≥ 3. and B is x1 ≥ x2, then P (B) = 7/12, but
P (B|A) = 1/2

2/3 = 3/4, so A and B are not independent.

4 Examples

4.1 Balls in Boxes

Suppose we have n distinguishable balls and n distinguishable boxes, and we
throuw each ball into a box randomly. A box may contain any number (including
0) of balls.

Then Ω = [n]m = {(b1, b2, . . . , bm)}, where bi denotes the box containing
ball i. P will be the uniform distribution.

Let E be the event “Box 1 is empty”. That is, bi > 1 for all i. Let Ai be the
event “ball i is not in box 1”. Then Ai and Aj are independent for all i 6= j.
Furthermore, P (Ai) = n−1

n . Note also that E =
⋂m
i=1Ai, so P (E) =

∏m
i=1Ai.

Therefore, P (E) =
(
n−1
n

)m. If m = cn, and Pn(E) be the probability that box
1 is empty when there are n boxes. Then limn→∞ Pn(E) = e−c.

4.2 Random Walk

A particle is at point 0 on the real line, and at each second may go either one
unit to the left, or one unit to the right. Suppose n seconds pass – so the particle
makes n moves total. Suppose that n = 2m. What is the probability that after
n moves, the particle is back at position zero?

Here, Ω is the set of all possible sequences consisting of L and R of length
n, and E is the set of all of these that have precisely m L’s. Therefore, we get

P (E) =

(
n
m

)
2n

4.3 Coloring Problem

Let A1, A2, . . . , An be subsets of A and |Ai| = k for 1 ≤ i ≤ n. If n < 2k−1 then
we may color the elements of A red or blue so that each Ai contains a red and
a blue element.

To see this, let us randomly color A. Then Ω = {R,B}A, with the uniform
distribution. Let BAD be the set of colorings that fail the desired property.
Then we want to show P (BAD) < 1. Let BAD(i) be the event Ai is all blue
or all red. Then P (BAD(i)) = 21−k. Then:
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P (BAD) = P (
n⋃
i=1

BAD(i))

≤ nP (BAD(i))
= n21−k

< 2k − 121−k

= 1

So P (BAD) < 1 and we are done.
The above proof is an example of the probabilistic method. We show that

it is possible to do something by attempting to do this thing randomly, and
showing that the probability of success is nonzero. Usually, such proofs give no
insight into how to acutally do something successfully.

5 Law of Total Probability

Theorem 5.1. Let B1, B2, . . . , Bn be pairwise disjoint events which partition
Ω, for any other event A,

P (A) =
n∑
i=1

P (A|Bi)P (Bi)

Proof. Exercise.

Example:
Suppose we have two crooked dice, so that if the outcome of the first is X

then the outcome of the second Y satisfies Y is equally likely to be X−1, X,X+1
(If X = 1 or X = 6, then instead we have two equallylikely values)

What is the probability that X = Y , if P (X = i) = 1
6 for each i?
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