
In all cases, G = (V,E) is a graph. Unless otherwise stated, consider only
simple graphs (graphs without loops or parallel edges).

1. We defined u, v ∈ V to be connected if there is a u, v-walk in G.
Show that connectedness in G is an equivalence relation on V . We
call the subgraphs induced by the equivalence classes of this relation
components.

By definition, v ∈ V is always connected to v. If there is a u, v-walk in G,
call it (u = v0, e1, v1, e2, v2, . . . , ek, vk = v), we may reverse the walk, as the
ends of an edge are still the two neighboring vertices on the walk. Similarly,
if there is a u, v-walk in G, and a v, w-walk in G, then concatenating the two
walks gives a walk from u to w.

2. Prove that in a graph, the number of vertices of odd degree
must be even. Hint: What is the sum of all degrees of all vertices in
any graph?

First, we have, since each end has two ends, and the degree of a vertex is
the number of “ends” represented by that vertex:∑

v∈V
δ(v) = 2 |E|

Thus the sum of all degrees of all vertices of a graph is even. Now, if we sum
over only the vertices of odd degree, we must still get an even number, since we
would be subtracting out terms each of which are even. This can only happen
if there are an even number of such vertices.

3. If a graph is simply a cycle on n vertices, how many edges does
it have?

Removing an edge from such a graph is a spanning tree, with n − 1 edges,
so the original graph had to have n vertices.
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4. What is the maximum number of edges a simple graph on n
vertices can have? Recall that a simple graph has no loops or parallel
edges (edges with the same ends). This problem is related to the
complete graph on n vertices, which is the graph where every pair of
vertices has an edge.

There can be at most one edge for each pair of vertices, which is n(n− 1)/2.

5. A graph is Hamiltonian if it has a cycle which contains all the
vertices of the graph. There is no known efficient algorithm to deter-
mine if a graph is Hamiltonian, and this concept is closely related to
the Travelling Salesman Problem: find the shortest cycle visiting all
vertices in a graph (assuming that each edge also has a length). Find
a graph with 8 vertices and 13 edges that is not Hamiltonian. Hint:
Consider a complete graph on 4 vertices. This graph has 4 vertices
and 6 edges.

One solution is to take two copies of K4, and link them with an edge.

6. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. We say that G1

and G2 are isomorphic if there are bijectons f : V1 → V2 and g : E1 → E2

so that if the ends of e ∈ E1 are u and v, then the ende of g(e) are f(u)
and f(v). Prove that isomorphism is an equivalence relation on the
set of all graphs. Technically, there is no such thing as “the set of all
graphs”, but don’t worry about that – just prove that the relation is
reflexive, symmetric, and transitive. Isomorphisms are useful in the
sense that if two graphs are isomorphic, the one graph is simply the
other with the vertices and edges “renamed”.

Reflexivity is accomplished by letting f , g be the identity functions.
For symmetry, suppose we have a bijection f : V1 → V2 and g : E1 → E2

satisfying required properties. Then f−1 and g−1 is an isomorphism from G2

to G1, (verify this!).
For transitivity, if f1 : V1 → V2, g1 : E1 → E2 forms an isomorphism from
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G1 to G2, and f2 : V2 → V3 and g2 : V2 → V3 is an isomorphism from G2 to G3,
then one can verify that f2 ◦ f1 is an isomorphism from G1 to G3.
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