
1. A hat check person discovers that n people’s hats have been
mixed up and returns these hats to the owners at random.

(a) In how many ways can the hats be returned so that the owners
get someone else’s hat?

Let N≥(J) for J ⊇ A be the number of ways in which the people in set J
can get their hats back. Then N≥(J) = n− |J |. Furthermore, if |J | = j, there
are

(
n
j

)
ways of picking J .

Therefore, we get, from I/E:

∞∑
k=0

(−1)k
(
n

k

)
(n− k)!

Note that this simplifies to:

∞∑
k=0

(−1)k
n!
k!

(b) What proportion of the total number of distributions do these
represent? Justify your answer.

There are n! total distributions, so dividing by n! yields:

∞∑
k=0

(−1)k

k!

2. Using P for pennies, N for nickels, D for dimes, and Q for
quarters, write the symbolic series for making change using from
zero to five of each kind of coin. What should you substitute for each
letter so that the coefficient of xn in the result is the number of ways
to make n cents using from zero to five of each coint? What is the
polynomial that results?

The symbolic series is:
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(P 0 ⊕ P 1 ⊕ P 2 +⊕ · · · ⊕ P 5)(N0 ⊕N1 ⊕N2 +⊕ · · · ⊕N5) ·
(D0 ⊕D1 ⊕D2 +⊕ · · · ⊕D5)(Q0 ⊕Q1 ⊕Q2 +⊕ · · · ⊕Q5) (1)

We would substitute x for P , x5 for N , x10 for D and x25 for Q. The
resulting polynomial is:

(1 + x+ x2 + · · ·+ x5)(1 + x5 + x10 + · · ·+ x25) ·
(1 + x10 + x20 + · · ·+ x50)(1 + x25 + x50 + · · ·+ x100) (2)

3. Write down the symbolic series and then the corresponding
generating function for the number of ways to choose an odd number
of apples and a multiple of 3 of tangerines from unlimited supplies.

The symbolic series is

(A⊕A3 ⊕A5 ⊕ . . . )(T 0 ⊕ T 3 ⊕ . . . )

The generating function is then:

(x+ x3 + x5 + . . . )(1 + x3 + x6 + . . . ) =
x

1− x2

1
1− x3

Either form is acceptable.

4. In class, we considered the number of ways to make change
for a dollar using nickels, dimes, and quarters. Extend the method to
allow for pennies as well. (Note that we may assume that the number
of pennies is always a multiple of 5). Also, look at the discussion in
Section 3.3 of Bogart. In this case, how many ways can we make
change for a dollar?
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let an be the number of ways to get n cents using only pennies, bn be the
number of ways to do so allowing nickels and pennies , cn be the number of
ways if we allow nickels, dimes, and pennies, and dn be the number of ways if
we also allow quarters.

We know that an = 1 for each n (in particular, if n is a multiple of 5).
We know that bn = 0 if n is not a multiple of 5, and b0 = 1, and bn+5 =

bn + an+5.
Now, ci = bi + ci−10, and di = ci + di−25.
Filling out the table, row-by-row, gives a final answer of 242.

5. What is the generating function for the number of partitions of
an integer into parts all of which are even numbers?

By the discussion on page 159 of the text, the answer is:

∞∏
i=0

1
1− x2i

6. Use generating functions to solve the recurrence relation an+2 =
4an+1 − 4an, assuming a0 = a1 = 1.

Theorem 4.2 in Bogart does not apply because the roots of the polynomial
x2 − 4x+ 4 = 0 are not distinct.

Instead, we must work the method from start to end:

∞∑
n=0

an+2x
n+2 =

∞∑
n=0

4an+1x
n+2 − 4

∞∑
n=0

anx
n+2

= 4x
∞∑
n=0

an+1x
n+1 − 4x2

∞∑
n=0

anx
n

Therefore:
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∞∑
n=2

anx
n = 4x

∞∑
n=1

anx
n − 4x2

∞∑
n=0

anx
n

So we have:

∞∑
n=0

anx
n − a0 − a1x = 4x

∞∑
n=0

anx
n − 4a0x− 4x2

∞∑
n=0

anx
n

Moving all the
∑∞
n=0 anx

n terms to the left, and all other terms to the right,
we see:

∞∑
n=0

anx
n − 4x

∞∑
n=0

anx
n + 4x2

∞∑
n=0

anx
n = a0 + a1x− 4a0x

So

∞∑
n=0

anx
n =

a0 + a1x− 4a0x

1− 4x+ 4x2

=
a0 + a1x− 4a0x

(1− 2x)2

=
1− 3x

(1− 2x)2

=
1

(1− 2x)2
− 3x

(1− 2x)2

=
1

(1− 2x)2
− x 3

(1− 2x)2

=
d

dx

∫
1

(1− 2x)2
dx− x d

dx

∫
3

(1− 2x)2
dx

=
d

dx

(
1

2(1− 2x)
+ C

)
− x d

dx

(
3

2(1− 2x)
+ C

)
=

d

dx

( ∞∑
n=0

2nxn

2

)
− x d

dx

( ∞∑
n=0

3 · 2nxn

2

)

=
∞∑
n=0

(n+ 1)2nxn −
∞∑
n=0

3n · 2n−1xn

=
∞∑
n=0

(
2n(n+ 1)− 3n2n−1

)
And it follows that an = 2n(n+ 1)− 3n2n−1.
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7. A merge sort of a list of numbers can be described as follows.
If the list has only one element, do nothing. Otherwise, split the list
in half, apply merge sort to each half, then merge the two sorted lists
in increasing order. Let an be the number of comparisons made by a
merge sort on an n-element list. For n = 1, 2, 4, figure out by exper-
iment how many comparisons you use. Assuming n is a power of 2,
weite a recurrence relation for the numbers an. Since this recurrence
involves an/2, it is not linear, and the merging keeps it from being
homogenous. There is a solution to this recurrence involving n log2 n.
One way to find it is to make the substitution n = 2k. Make this
substitution, solve the resulting recurrence, and convert back from
k to n to get a formula for an. This kind of recurrence frequently
arises in analyzing many of the “divide and conquer” algorithms in
computing. (Quick sort is another good example of this).

It turns out that I messed up in the e-mail I sent. It can take up to 2n
comparisons to merge two lists of size n together, not just n comparisons. In
any case, the answers should be similar. After making the required substitution
– that is, letting ck = a2k , we see that cn+1 = 2cn + 2n+1. In any event, we get:

∞∑
n=0

cn+1x
n+1 = 2

∞∑
n=0

cnx
n+1 +

∞∑
n=0

2n+1xn+1

= 2x
∞∑
n=0

cnx
n +

∞∑
n=0

2n+1xn+1

So we get

∞∑
n=0

cnx
n − c0 = 2x

∞∑
n=0

cnx
n +

∞∑
n=0

2n+1xn+1

So, we get

(1− 2x)
∞∑
n=0

cnx
n = c0 +

x

(1− 2x)

Thus, we get

∞∑
n=0

cnx
n =

c0 + x

(1− 2x)2

Similarly to what we did in problem 6, we get cn = c0(n+ 1)2n + n2n−1.
Thus a2n = a1(n+ 1)2n + n2n−1, so an = a1(log2 n+ 1)n+ log(n)(n− 1).
The anwer should be approximately Cn log n for some constant C.
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