
21-228 Homework 3

Due September 25, 2001

1. Remember that we have defined a relation to be a special kind
of set. For (a) or (b) either give a proof for a “yes” answer, or a
counterexample for a “no” answer (remember the counterexample
must be justified too).

(a) Is the intersection of two equivalence relations on the same set
an equivalence relation?

This is true. Note that if R1 and R2 are equivalence relations on a set A,
and if we let R = R1 ∩R2, then we have that xRy iff xR1y and xR2y. We now
need to check the three properties:

Reflexivity: Since R1 and R2 are equivalence relations, we have xR1x and xR2x, for
each x ∈ A. Therefore, xRx for each x ∈ A.

Symmetry: Let x, y ∈ A be given so that xRy. Then xR1y and xR2y. Therefore,
since R1 and R2 are equivalence relations, it follows that yR1x and yR2x.
Therefore, yRx, and we have proved symmetry.

Transitivity: Let x, y, z ∈ A be given so that xRy and yRz. It then follows that xR1y,
xR2y, yR1z, and yR2z. Since R1 and R2 are equivalence relations, it
follows that xR1z and xR2z. Therefore, xRz, and transitivity has been
proved.

(b) Is the union of two equivalence relations on the same set an
equivalence relation?
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This is false. If R1 and R2 are equivalence relations on A, with R = R1∪R2,
then we have xRy iff xR1y or xR2y. It turns out that R will satisfy both the
reflexive and symmetric requirements but may fail the transitivity requirement.
A counterexample is if we let A be the set of natural numbers. Then let R1 be
the relation xR1y iff 2|(x − y), and R2 be the relation xR2y iff 3|(x − y). We
have seen in class that these are both equivalence relations. We then know that
2R14, and 4R27. So 2R4, and 4R7. But since 2R17 and 2R27 are both false, it
follows that 2R7 cannot hold either. Thus transitivity fails.

2. Show that the number of ways of obtaining the integer k as a
sum of a list of n nonnegative integers is

(
n+k−1

k

)
. What if we require

all the integers to be positive?

If we consider the n integers to be bookshelves, and the integer k to represent
k books to be placed in these bookshelves, then this problem represents the
number of ways to distribute k identical books throughout n bookshelves. In
the second case, we require that each bookshelf be given at least 1 book, so we
first give each bookshelf that one book, then there are

(
k−1
k−n
)

ways to distribute
the remaining k − n books to the n bookshelves.

3. In how many ways can n identical chemistry books, r iden-
tical mathematics books, s identical physics books, and t identical
astronomy books be placed on k bookshelves?

We consider this problem by first pretenting that all the books are distinct
(for example, we assign each one a number within its group). As seen from class,
the number of ways of doing this is (k+n+r+s+t−1)!

(k−1)! . Now, to make this equal to
the actual number of arrangements, we notice that any two arrangements formed
by rearranging books on the same subject are indistinguishable. Therefore, we
dvide by n!r!s!t!, and we get:

(k + n+ r + s+ t− 1)!
(k − 1)!n!r!s!t!

=
(
k + n+ r + s+ t− 1

(k − 1), n, r, s, t

)
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4. In how many ways can 100 distinct beads be used to make three
necklaces with 20 beads and four necklaces with 10 beads?

By Theorem 1.6 on P.77 of Bogart, 3rd edition, there are 100!
(20!)3(10!)43!4! ways

of partitioning the beads into three groups of 20 and 4 groups of 10. Once we
have partitioned the set into such groups, there are 19!/2 ways of arranging the
beads in the groups of 20 to form a necklace, and 9!/2 ways of arranging the
beads in the groups of 10 to form a necklace. Since there are 3 groups of 20 and
four groups of 10, we get a final answer of:

100!
(20!)3(10!)43!4!

(
19!
2

)3(9!
2

4)

For 5 and 6, you may use the following fact without proof:
Fact 1: For Nim, the end is where there are no chips left in any

stack. Suppose that there is a property P satisfied by a position where
all chips have been removed. Suppose further that:

a) Any legal move from any situation with property P sends the
game to a situation where property P does not hold b) From any
situation that does *not* satisfy property P , there is a legal move to
a situation that *does* satisfy property P .

Then: If a player has to make a move from a state with property
P , then her adversary has a winning strategy. Similarly, if a player
moves from a state for which property P does *not* hold, then that
player has a guaranteed win.

5. The game of Nim is played as follows. We have n stacks of chips,
where stack i starts with xi chips. Each player plays in turn, where
in a turn, a player may remove any number of the chips from one
pile, but may not remove chips from more than one pile. Whoever
removes the last chip wins. Clearly, if there is only one pile, the first
player is guaranteed to win. Suppose there are two piles, with sizes
x1 and x2, where x1 and x2 are both positive (i.e. nonzero). For which
values of x1 and x2 is the first player guaranteed a win? For which
values is the second player guaranteed a win? Prove your answers.
Note that every pair of positive integers should be in one of these two
classes.

The first player has a winning strategy iff x1 6= x2, and the second player
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has a winning strategy if x1 = x2. To prove this, we appeal to the fact, where P
is the property “The two piles have the same number of chips”. We must show
that a) and b) hold in the statement of the fact.

a) is true because we must remove at least one chip from one pile, and only
one pile may be touched. Therefore, if the two piles have the same number of
chips before the move, the pile that has a chip removed must be smaller after
the move, so property P can no loger hold.

b) is true because if the sizes a1 and a2 of the piles are different, without
loss of generality we may assume that a1 > a2, so we may remove a1 − a2 > 0
chips from pile 1 to make the two piles equal.

So, when x1 = x2, the first player has to make a move when property P , so
the second player has a winning strategy. Otherwise, the first player can force
the second player to make a move from a position with property P , so the first
player has a winning strategy.

6. Again, we’re playing the game of Nim described in Problem
5. Suppose now that there we start with n stacks – under which
conditions does the first player have a win, and what is the winning
strategy in general? This analysis is harder (but there are parallels
in the answers) than with only two stacks.

At any point in the game, let a1, . . . , an be the sizes of the n piles. Consider
their binary expansion, and the nim-sum as described in the hints. Then the
first player wins iff this nim-sum has at least one non-zero bit, and the second
player wins otherwise. So let property P be “the nim-sum of this position is
zero”. Then we need only show that a) and b) hold.

Property a) holds because we must change at least one bit in one pile, and
are not allowed to change bits in any other pile. Therefore, we must change a
bit in the sum.

Property b) holds as follows – investigate the left-most 1 in the nim-sum.
There must be a corresponding 1 in one of the piles above. Pick a pile with
such a corresponding 1, switch that 1 to a 0 in the binary representation of the
pile. For the other 1’s in the nim-sum (all of which must be to the right of that
original 1), flip the bit in the corresponding position of the pile that we chose.
The resulting num-sum is zero, and since all of the other modifications occur
in less-significant bits than the one in which we changed a 1 to a 0, we have
reduced the binary number for that pile, which therefore corresponds to a legal
move.

You know, it’s a lot easier if I describe this in person, as I’m too lazy to
draw nice aligned tables in TeX.
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7. Chomp is a game played as follows. We start with an m × n
grid of squares, where the lowerleft corner is the square (1, 1), and
the upper-right corner is the square (m,n). Players alternate moving
as follows: Each player, in her turn, must eat a square, and in doing
so, also eats any square that is above and to the right. So, if a player
chomps at (x0, y0), she removes all (x, y) with x ≥ x0 and y ≥ y0. The
square at (1, 1) is poisoned though – chomping it results in a loss. Give
a strategy-stealing argument to show that the second player cannot
have a winning strategy.

Aside: This implies that the first player has a winning strategy.
However, your proof probably will give no hint as to the idea of the
first player’s winning move. Indeed, we know that the first player
has a winning strategy in this case, but it is still unknown what that
strategy is!

If the second player has a winning strategy, it must work no matter what
the first player does on her first move. Suppose that the first player removes
only the upper-right corner (m,n). Suppose that in this case, the second player’s
winning move would be to remove the square (x0, y0). Then the resulting board,
which would be a losing board for the first player, would consist of the original
board, minus squares (x, y) where x ≥ x0 and y ≥ y0. However, the first player,
by chomping the square (x, y) would present the second player with that exact
same board – which means that the second player would be in a losing position.
So both players would have a winning strategy, which is impossible.
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