
21-228 Exam 3

Name:

December 10, 2001

• Place your name and Section letter (whichever section you are
sitting in on) on the space provided.

• You have 50 minutes. Pace yourself appropriately.

• All answers must be justified to receive credit. Please
write as legibly as possible.

• You may use the back sides (and any other spare space on the
exam pages) if you wish. Clearly indicate where your work is if
you wish to do so – we will not be responsible for grading such
work otherwise.

• The back page contains a formula sheet, which you may tear
off if desired.

• All graphs in your answers should be simple – that is, no loops
or parallel edges.

• Good luck!

Question Score Possible

1 80

2 20

Total 100
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1. This problem refers to the graph on the following page.

Answer these questions on the following few pages.

(a) (10 points) Suppose that we have a matrix A so that the
entry in row i and column j is the distance of a direct road from
i to j. How do we know if the resulting data can be represented
as an undirected graph? (Give a bief answer – no more than one
sentence).

If A is symmetric, or, if, equivalently, if Aij = Aji for all i, j.

(b) (20 points) If we were to use Kruskal’s algorithm to form
a minimum spanning tree of this graph, in which order would the
edges be entered?

Below is a listing of when each edge is considered, followed by
whether it gets put in the tree.

1. v1v3, yes

2. v2v4, yes

3. v5v7, yes

4. v2v5, yes

5. v4v7, no – forms cycle by v4, v2, v5, v7.

6. v4v5, no – forms v4, v5, v2 cycle

7. v3v4, yes

8. v1v4, no – forms v − 1, v3, v4 cycle

9. v1v2, no – forms v1, v2, v5, v4, v3 cycle.

10. v4v6, yes

We may stop here because the edges entered now form a tree.
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(c) (20 points) If we were to use Prim’s algorithm, starting at
vertex 1, now in which order would the edges be added?

1. v1v3

2. v3v4

3. v2v4

4. v2v5

5. v5v7

6. v4v6

(d) (20 points) If we were to run Dijkstra’s algorithm on this
graph, finding the shortest path from vertex 1 to all other vertices,
which are the first two vertices that would be added to S (after
vertex 1 itself)? Hint: you do not have to run the algorithm to
completion to answer the question.

After the first iteration we see that t1 = 0, t2 = 9, t4 = 8, and
t3 = 1. So, the next vertex to get added is v3.

After the next iteration, considering the edges leaving v3, we see
that t4 = 1 + 7 = 8, t6 = 1 + 11 = 12, and t4 = min(8, 1 + 7) = 8.
Therefore, v4 is the next vertex to get added.

(e) (10 points) How many colors are needed to color the vertices
of the graph so that no two adjacent vertices have the same color?
Why can’t we accomplish this with fewer colors? Give a reason that
is easily generalizable to a large, interesting class of graphs.

Three colors are needed. This is accomplished by coloring the
central vertex one color, and the outer vertices alternating colors.
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Fewer colors are not possible because the graph is not bipartite, and
only bipartite graphs are 2-colorable.

2. (20 points) Let G be a graph. A perfect matching on G is a
matching M that saturates all vertices of the graph. Show that if
G has a perfect matching, then every vertex cover has size at least
|V | /2.

A perfect matching sets the edges in pairs. In this manner, |V | |/2
pairs are needed. So, M will have |V | |/2 edges, and therefore any
cover must, by Formula 5, have at least this many vertices. Note
that bipartiteness is completely irrelevant.
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Some other stuff

1. A graph is bipartite if its vertex set can be partitioned into two
sets A, B so that each edge has one end in A and the other in
B

2. A graph is bipartite iff it has no cycles of odd length.

3. A Matching is a set of edges, no two of which share an end.

4. A Vertex Cover is a set S of vertices, so that every edge in G
has at least one end in S.

5. If G is a graph, and M a matching, and S a vertex cover, then
|S| ≥ |M |.

6. A matching M saturates a set S of vertices iff each vertex in S
is an end of some edge in M .

7. If G is a bipartite graph, then the size of a maximum matching
is the same as the size of a minimum vertex cover.

8. A matroid on a set X is a collection F of subsets of X so that:

(a) If A ∈ F , and B ⊆ A, then B ∈ F .

(b) If |A| < |B|, and A,B ∈ F , then there is some x ∈ B − A
so that A ∪ {x} ∈ F .

9. If F is a matroid in X, then A ∈ F is a basis if no element
of F properly contains A. That is, A cannot be extended to
another element of F by adding another element.
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