Random Variables

A function Z : 2 — R is called a random vari-
able.

Two Dice

Z(z1,x2) = o1 + T2
pr =P(Z=k)=P({w: Z(w) =k}).
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Coloured Balls

2 = {k indistinguishable balls, n colours }.

Uniform distribution.
/Z, = no. colours used.

(rn) (m—1)

Pm = (n—l—k—l) '
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If t=10,n =5 then
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Binomial Random Variable B, ;.

n coin tosses. p = P(Heads) for each toss.
Q= {H,T}"

P(w) =p"(1—p)" "
where k is the number of H's in w.
Bp.p(w) = no. of occurrences of H in w.

n)pk(l —p)" "~

P(Brp=Fk) = (,

If n=8and p=1/3 then



Poisson Random Variable Po()).

Q={0,1,2,...,} and

A\ee—A

for all k£ > 0.
k!

P(Po()\) = k) =

This is a limiting case of B, )/, where n — co.

Po()) is the number of occurrences of an event
which is individually rare, but has constant ex-
pectation in a large population.



Fix k, then
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Explanation of <Z) ~ nk/k! for fixed k.

>

'V

N

A~
S

S SRS

(13

(1

k(k-1)

2n

2

1 - =

n

|

)...(1_

k—1

n

)



Expectation (Average)

Z is a random variable. Its expected value is
given by

E(Z) = ) Z(w)P(w)

we
= > kP(Z =k).
k

Ex: Two Dice
Z = x1 + xo.
2 1

1
E(Z)=2x —+3x —+4 ... 12 x —=17.
(2) 36+ 36+ T 36



10 indistinguishable balls, 5 colours. Z is the
number of colours actually used.

5 90 360 420 126
+2X ——+3 X ——+4X —|—5xm.

E(Z)=—— —
(2) 1001 1001 1001 1001

In general: n colours, m balls.
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Geometric

Q=1{1,2,...,}
P(k) = (1 —-p)1p, Z(k) =k.

E(Z) = S k(1—p)k1p
k=1
_ D
1= (1=p))2
1

p
— expected number of trials until success.

k—1 __
Z kx = (1 —:c)2.

k=0



Binomial By p.

n

E(Bnp) = 3 k(,)p*(1-p)"*
k=0
(" T Bk — p)nh

. k—1

om—=1\ 1 n—k
— an(k_l)p (1-p)
k=1

np(p+ (1 —p))"?
np.
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Suppose X, Y are random variables on the same
probability space (2.

Claim: E(X +Y) =E(X) + E(Y).
Proof:

E(X+Y) = ZZ(aJrﬂ)P(X:a,Y:ﬂ)

— ZZaP(X_aY ﬁ)+ZZﬂP(X—aY B)
_ Z ZP(X—aY ﬁ)—l—ZﬁZP(X—aY B)

= ZaP(X =a)+ZﬂP(Y=B)
B

E(X) + E(Y).

In general if Xq,Xo,...,X, are random vari-
ables on €2 then

E(X1+Xo+ - -+Xpn) = E(X1)+E(X2)+ - -+E(Xn)
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Binomial

if the :th coin comes up heads.

E(Bnp) =E(X1) +E(X2)+ -+ E(Xn) =np
since E(X;) =px 1+ (1—p) xO0.

Same probability space. Z(w) denotes the num-
ber of occurrences of the sequence H,T, H in

Ww.

Z =X1+Xo+---+X,,_o where X; = 1 if coin
tosses 1,1+ 1,:+2 come up H,T, H respectively.
So

E(Z) = E(X1)+E(X2)+---+E(X,-2) = (n—2)p°(1-p),
since P(z; = 1) = p2(1 — p).
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m indistinguishable balls, n colours. Z is the
number of colours actually used.

Z; =1 < colour z is used.
Z = Z1+ -+ Zn= number of colours actually
used.

E(Z) E(Z1) + -+ E(Zn)
nE(Z1)
n PF(Z]_ 7+— O)

TR
(")

— N
m

- n<1_n—7|:b7:7,1—1)

mn
n+m-—1
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m distinguishable balls, n boxes

A number of non-empty boxes.

Zi+ Zo+ -+ Zn

where Z; = 1 if box 7 is non-empty and = O
otherwise. Hence,

w0 =n(1-(1-2)")

since E(Zz-)mz P( box 7 is non-empty) =
(1-(1-2)")

Why is this different from the previous slide?
The answer is that the indistinguishable balls
space is obtained by partitioning the distin-
guishable balls space and then giving each set
of the partition equal probability as opposed to
a probability proportional to its size.

For example, if the balls are indistinguishable
then the probability g)f exactly one non-empty
box is n x (mi’fl_l -~ whereas, if the balls are
distinguishable, this probability becomes

m

nxn
13



Conditional Expectation

Suppose A C €2 and Z is a a random variable
on 2. Then

E(Z|A) = Z Z(w)P(w| A) = ZkP(Z =k|A).
weA k

Ex: Two Dice

Z = x1 + xo and A:{xl Zx2—|—4}.

A={(5,1),(6,1),(6,2)} and so P(A) =1/12.

1/36 1/36 1
/ -I-7><—/ 8 —/36—7

E(Z|A) =6x e
(Z14) 1/12 1/12 ><1/12
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Let Bq,Bo,..., B, be pairwise disjoint events
which partition €2. Let Z be a random variable
on 2. Then

E(Z) = 3 E(Z | By) Pr(By).
=1

Proof

P(w)

P(Bi)P(Bi)

S ECZIBPGB) = Y % 2w
1=1

n
i=1w€Bi
n

= > > Z(wPWw)
i:].wEB?;

= > Z(w)P(w)

wel2
— E(2).
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Hashing

Let U ={0,1,... , N—1}and H = {0,1,... ,n—
1} where n divides N and N > n. f:U — H,
f(u) =u mod n.

(H is a hash table and U is the universe of
objects from which a subset is to be stored in
the table.)

Suppose uqi,un,... ,um, m = an, are a random
subset of U. A copy of u; is stored in “cell”
f(u;) and u;'s that “hash” to the same cell are
stored as a linked list.

Questions: wu is chosen uniformly from U.

(i) What is the expected time 77 to determine
whether or not u is in the table?

(ii) If it is given that u is in the table, what is
the expected time 75 to find where it is placed?

Time = The number of comparisons between

elements of U needed.
16



Let M = N/n, the number of u’s that map to
a cell. Let X, denote the number of w; for
which f(u;) = k. Then

o
|
l—\

=1
Pyl
>
e
N———

B(Ty) = Y B(Ti | f(u) = HP(f(u) = k)
k=1
= Y E(T1 | f(w) =)
k=1
13 14X X, X
B ﬁ,;f( 2 M_I_Xk(l M))
< % Zn: E(X})
1
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Let X denote X4, X»o,..., X, and let X denote
the set of possible values for X. Then

E(T»)

> E(T2 | X)P(X)
Xex

> S BT | f(w) =k, X)
XeX k=1
<P = HP)

> Z B(T2 | f() = b, X)° FP(X)

XcX k=

1+ X\ Xy

P(X)

Xze:;vkzl( > m
o 2 ZXk(l‘l'Xk)P(X)
mXEXk: 1
1,1 nixv2a . 4 2
% + QME(X]' + +Xn)
§+—E(X1)

m M\ (N—M
1 (t)( t)
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If « is small and ¢ is small then we can write
M\ (N—M
(t)(m—t) _MY(N — M)™ "t m!

<N> t! (m-—-t)! Nm

m
1IN mt ate @
~ (1 — —) — = )
n tint t!

Then we can further write

1 1 & sale™@ !
E(T) ~ =+ — t =14 —
()~ 5+ % t; £l T3
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Random Walk: Suppose we do n steps of pre-
viously described random walk. Let Z,, denote
the number of times the walk visits the origin.
Then

Zn=Yo+Y1+Yo+- -+ Yn

where Y; = 1 if X; = 0 — recall that X, is the
position of the particle after : moves.

But
- 0 | 1 odd
(Yi) = (i/?’z)Q—i i even

So

E(Zn)

I
]
2 3
N
N

3

N

N | -

O\M
3 <
N

o1 =

~| 3

aE

N

o8

8

20



Consider the following program which com-

putes the minimum of the n numbers z1, x>, ..., xn.
begin

min .= o0,

for : =1 to n do

begin

If z;, < min then min = z;

end

output mmn

end

If the z; are all different and in random order,
what is the expected number of times that that
the statement mwn := z; is executed?

21



Q = {permutations of 1,2,... ,n} — uniform
distribution.

Let X be the number of executions of state-
ment man = x;. Let

1 statement executed at =.
X, = )
O otherwise

Then X; = 1 iff x; = min{z1,zo,... ,z;} and
SO

—1)! 1
;=1 =1
7! (/
[The number of permutations of {z1,zo,... ,2;}

in which z, is the largest is (i — 1)!.] So

B(X) = E(ZX)
=1

22



Independent Random Variables

Random variables X,Y defined on the same
probability space are called independent if for
all a, 8 the events {X = a} and {Y = g3} are
independent.

Example: if 2 = {0,1}" and the values of X, Y

depend only on the values of the bits in disjoint
sets Ay, Ay then X,Y are independent.

E.g. if X = number of 1's in first m bits and
Y = number of 1's in last n — m bits.

The independence of X, Y follows directly from
the disjointness of A x_ ) and Ay g

23



If X and Y are independent random variables
then

E(XY) = E(X)E(Y).

E(XY)

afP(X = o, Y = B)

=
SN afP(X = a)P(Y = B)
@ B

= [eroc=o)

— E(X)E(Y).

> BP(Y = 6)]
E

This is not true if X and Y are not indepen-
dent. E.g. Two Dice: X =z1+zoand Y = z;.
E(X)=7,E(Y) =7/2 and E(XY) = E(2%) +
E(z1zo) = 91/6 + (7/2)2.
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If X = Bnp = number of heads in n coin flips
and Y = n — Bpp then X and Y are not inde-
pendent. E.g. P(X = n) = p" but
P(X=n|Y =n)=0.

Now suppose the number of coin flips is the
random variable N = Po(\). Let X be number
of heads and Y be the number of tails. Let

q=1—np.
P X=z,Y=y) = PX=xz,Y=y|N=x+y)
xP(N =z +y)
— (LL’—|—y) x Ax+y e_)\

(Ap)m(kq)ye_A
x!ly! '
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P(X=2) = ) P(X=2|N=n)P(N=n)
n>x
ny g n—a:>‘n —
_ (p)® (Ag)™®
- x! © n_%;o (n —x)!
— ()\p)a: —)\e)\q
x!
_ (Ap)® —\p
x!
Similarly,
Y
y!
and so

P(X=2,Y =y)=P(X =2)P(Y =y)

for all x,y and the two random variables are
independent!
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