
Saurabh	Kadekodi

Gotta	have	HeART	
Improving	storage	ef7iciency	by	exploiting		

disk-reliability	heterogeneity	

Greg		
Ganger

Rashmi		
Vinayak

Francisco		
Maturana

Jason		
Yang

Suhas		
Jayaram



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Cluster	storage	systems

2

• Storage	subsystem	of	distributed	systems

• Thousands	to	millions	of	disks	in	primary	storage	tier

• Built	incrementally	according	to	demand



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Reliability	heterogeneity	in	disks

3

• Disk	7leet	has	heterogeneous	collection	of	disks

•Different	in	reliability	
• Across	disks:	
- Manufacturing	differences	across	makes/models	
- Experiences:	different	vibration	/	temperature/	IO	churn	

• For	each	disk:	
- 3	reliability	phases	throughout	lifetime



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Overview	of	exploiting	reliability	heterogeneity

4

• Data	redundancy	typically	same	across	disk	7leet
• E.g.,	3-replication:	3	copies	of	data	on	independent	devices

• Disks	from	same	storage	tier	vary	a	lot	in	failure	rates
• E.g.,	HDDs	from	different	makes/models	fail	differently

• Explicitly	consider	reliability	heterogeneity	in	deciding	redundancy

• HeART:	Heterogeneity	Aware	Redundancy	Tuner
• Tailors	redundancy	to	disk	failure	rate	heterogeneity

• A	safe,	accurate	and	online	framework

• Reduces	storage	overhead,	and	thus	cost

• Pacemaker:	regulating	the	HeART
• Manages	redundancy	management	overheads

• Perform	cheap	re-encoding

• Converts	urgent	re-encoding	tasks	into	schedulable	tasks

• HeART	+	Pacemaker	reduces	overall	storage	space	by	>	20%	[m(b)illions	$]



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Cluster	storage	system	reliability

5

• Failures	common	in	today’s	cluster	storage	systems
• Disk	failures	measured	as	annualized	failure	rates	(AFR)

• AFR									expected	%	of	disk	failures	in	a	year	

• Popular	fault	tolerance	mechanism									redundancy
• Full	data	replication	(n-replication)
• Erasure	coding	(k-of-n:	k	data	chunks,	n-k	parity	chunks)

• Reliability	measured	in	mean-time-to-data-loss	(MTTDL)

• Redundancy	con7igurations	ignore	disk	AFR	differences



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Reliability	heterogeneity

6

Backblaze	dataset	
5	yrs	of	HDD	reliability,	

100K+	disks



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Reliability	heterogeneity

6

• HDD	failure	rates	vary	a	lot	in	the	7ield

• No	single	redundancy	scheme	is	good	enough	for	all	disks
• Conservative	redundancy									overprotection	for	strong	disk	types

• Lower	redundancy									subset	of	disks	risk	data	loss



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Exploiting	reliability	heterogeneity

7

• Redundancy	decisions	informed	by	AFR	differences

• Challenges
1. Has	to	be	monitored	in	the	Oield

2. Disk	failure	rate	varies	over	its	lifetime

• Redundancy	tailoring	mechanism	needs	to	be:
• Safe:	prevent	under-redundancy	from	causing	data	loss

• Accurate:	identify	different	reliability	phases	correctly

• Online:	bene7its	only	realizable	during	disk’s	low	failure	rate



Carnegie Mellon Saurabh	Kadekodi	©	October	20198

The	bathtub	curve	(each	disk	group)

Infancy

AF
R	
(%
)

Age	of	disk0
0

WearoutUseful	life

Lower	failure	rate

3-5		
months

lower	AFR								lower	redundancy								lower	storage	cost

3-4		
years



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Ti
m
e

Disk	group	x		
infant-mortality	end

Disk	group	x		
wearout	start

ftdefau ltftdefau lt ftx

Disk	group	y		
Infant-mortality	end

Disk	group	y		
wearout	start

Ti
m
eftdefau ltftdefau lt fty

Two	disk	groups	over	time

9

Deployment	
(start	monitoring)

ftdefau lt =	default	fault	tolerance	scheme

y

x



Carnegie Mellon Saurabh	Kadekodi	©	October	201910

start	of		
wearout

end	of		
infancy

decommissioning		
age

ftdefau lt ftdefau ltftdisk−g ro u p

Ti
m
e

How	to	detect?

Is	AFR		
well-behaved?

What	should	the		
redundancy	be?

Disk-group	reliability	timeline



Carnegie Mellon Saurabh	Kadekodi	©	October	201911

Heteretogeneity-Aware	Redundancy	Tuner

Reliability	requirement	
(MTTDL)

Anomaly	detector

or

HeART

Disk	health	
monitoring	data

Change	point	detector Redundancy	Tuner



Carnegie Mellon Saurabh	Kadekodi	©	October	201912

start	of		
wearout

end	of		
infancy

decommissioning		
age

ftdefau lt ftdefau ltftdisk−g ro u p

Ti
m

e

How	to	detect?

Is	AFR		
well-behaved?

What	should	the		
redundancy	be?

Disk-group	reliability	timeline



Carnegie Mellon Saurabh	Kadekodi	©	October	201912

start	of		
wearout

end	of		
infancy

decommissioning		
age

ftdefau lt ftdefau ltftdisk−g ro u p

Ti
m

e

How	to	detect?

Is	AFR		
well-behaved?

What	should	the		
redundancy	be?

Disk-group	reliability	timeline



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

AFR	in	useful	life:	stability	&	anomalies

13

• Useful	life	AFR	is	typically	stable,	within	reasonable	bounds

• External	factors	can	cause	simultaneous	bulk	failures
• Rack	power	failure,	accidents,	human	error,	etc.

• “Anomalies”	appear	like	(premature)	wearout
• Bene7its	proportional	to	length	of	useful	life
• Bulk	failures	may	not	re7lect	true	HDD	failure	rate

true		
wearout

end	of		
infancy

decommissioning		
age

ftdefau lt ftdefau ltftdisk−g ro u p
Time

premature	
wearout

ftdefau lt

Anomalous		
failures



Carnegie Mellon Saurabh	Kadekodi	©	October	201914

disk	group		
old	age	start

disk	group	infant		
mortality	end

disk	group		
decommissioned

ftdefau lt ftdefau ltftdisk−g ro u p

Ti
m
e

How	to	detect?

Is	AFR		
well-behaved?

What	should	the		
redundancy	be?

Disk-group	reliability	timeline



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Change	point	detection

15

• Reliability	target	can	be	missed	if:
• Hasty	declaration	of	end	of	infancy
• Delayed	declaration	of	onset	of	wearout

• Tradeoff	between	extracting	bene7its	and	safety

• Use	online	change	point	detectors	to	identify	change	points

Infancy

AF
R	
(%

)

Age	of	disk0,	0

WearoutUseful	life

Lower	failure	rate



Carnegie Mellon Saurabh	Kadekodi	©	October	201916

start	of		
wearout

end	of		
infancy

decommissioning	
age

ftdefau lt ftdefau ltftdisk−g ro u p

Ti
m
e

How	to	detect?

Is	AFR		
well-behaved?

What	should	the		
redundancy	be?

Disk-group	reliability	timeline



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

Redundancy	scheme	selection

17

ftdisk−g ro u p ftdefau lt



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

Redundancy	scheme	selection

17

ftdisk−g ro u p ftdefau lt
Target reliability constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

Redundancy	scheme	selection

17

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p ftdefau lt
Target reliability constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

Redundancy	scheme	selection

17

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p ftdefau lt
Target reliability constraint

Min num failures constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

• 																							dimension	<=	max	dimension	(max	k	=	30)

Redundancy	scheme	selection

17

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt
Target reliability constraint

Min num failures constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

• 																							dimension	<=	max	dimension	(max	k	=	30)

Redundancy	scheme	selection

17

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt
Target reliability constraint

Min num failures constraint

Max code width constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

• 																							dimension	<=	max	dimension	(max	k	=	30)

• Default	AFR	x																	>=	Useful	life	AFR	x
- Reconstruction	IO:	k	x	disk-capacity	x	AFR

Redundancy	scheme	selection

17

ftdefau lt ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt
Target reliability constraint

Min num failures constraint

Max code width constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

• 																							dimension	<=	max	dimension	(max	k	=	30)

• Default	AFR	x																	>=	Useful	life	AFR	x
- Reconstruction	IO:	k	x	disk-capacity	x	AFR

Redundancy	scheme	selection

17

ftdefau lt ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt
Target reliability constraint

Min num failures constraint

Max code width constraint

Max reconstruction work constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

• 																							dimension	<=	max	dimension	(max	k	=	30)

• Default	AFR	x																	>=	Useful	life	AFR	x
- Reconstruction	IO:	k	x	disk-capacity	x	AFR

• 																							reconstr.	time	<=	max	reconstr.	time	(1.5	hrs)

Redundancy	scheme	selection

17

ftdefau lt ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p

Target reliability constraint

Min num failures constraint

Max code width constraint

Max reconstruction work constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

• 																							dimension	<=	max	dimension	(max	k	=	30)

• Default	AFR	x																	>=	Useful	life	AFR	x
- Reconstruction	IO:	k	x	disk-capacity	x	AFR

• 																							reconstr.	time	<=	max	reconstr.	time	(1.5	hrs)

Redundancy	scheme	selection

17

ftdefau lt ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p

ftdisk−g ro u p ftdefau lt

ftdisk−g ro u p

Target reliability constraint

Min num failures constraint

Max code width constraint

Max reconstruction work constraint

Max reconstruction time constraint



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

HeART	is	possible,	but	is	it	feasible?

18

• Data	gets	re-encoded	twice	for	each	disk
• Infancy	—>	useful	life
• Useful	life	—>	wearout

• Read—re-encode—write	cycle	can	be	very	expensive
• Re-encoding	1TB	disk	from	30-of-33	to	6-of-9	is	at	least	75TB	IO

• Re-encoding	IO	can	hurt	because	of	two	main	reasons:
• Wide	redundancy	schemes	used
• Too	many	disks	requiring	re-encoding	at	the	same	time



Carnegie Mellon Saurabh	Kadekodi	©	October	201919

start	of		
wearout

end	of		
infancy

decommissioning	
age

ftdefau lt ftdefau ltftdisk−g ro u p

Ti
m
e

How	to	detect?

Is	AFR		
well-behaved?

What	should	the		
redundancy	be?

Disk-group	reliability	timeline
Are	re-encoding	
overheads		
tolerable?

Is	all	re-encoding	
possible	together?



Carnegie Mellon Saurabh	Kadekodi	©	October	201920

Pacemaker:	regulating	the	HeART

Cheaper	reencoding

Pacemaker

Scheduling	background	work



Carnegie Mellon Saurabh	Kadekodi	©	October	201921

start	of		
wearout

end	of		
infancy

decommissioning	
age

ftdefau lt ftdefau ltftdisk−g ro u p

Ti
m
e

How	to	detect?

Is	AFR		
well-behaved?

What	should	the		
redundancy	be?

Disk-group	reliability	timeline
Are	re-encoding	
overheads		
tolerable?

Is	the	re-encoding	
possible	together?



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Data	reencoding	=	data	redistribution

22

• Recall	that	naive	read—re-encode—write	is	very	expensive
• k	x	disk	capacity	needs	to	be	read	and	written	

• Key	idea:	disks	change	failure	families,	it’s	data	need	not

• Moving	one	stripe	unit	cheaper	than	reencoding	entire	stripe
• Decouples	reencoding	IO	from	redundancy	scheme	used
• Moving	eliminates	the	computation	overhead,	only	generates	I/O

infancy useful	life wearout
Time

Disk	born Disk	decom



Carnegie Mellon Saurabh	Kadekodi	©	October	201923

start	of		
wearout

end	of		
infancy

decommissioning	
age

ftdefau lt ftdefau ltftdisk−g ro u p

Ti
m
e

How	to	detect?

Is	AFR		
well-behaved?

What	should	the		
redundancy	be?

Disk-group	reliability	timeline
Are	reencoding	
overheads		
tolerable?

Is	the	reencoding	
schedulable?



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Schedulable	background	work

24

• Infancy	to	useful	life	transition	is	completely	schedulable
• Only	impacts	savings	because	of	reduced	useful	life

• Useful	life	to	wearout	is	urgent
• But	not	all	of	it…

• Key	observation:	not	all	disks	enter	wearout	together

• Incremental	disk	deployments	help	schedule	urgent	work
• Only	the	Oirst	disk	batch	used	to	detect	wearout	is	urgent
• Subsequent	disks	wearout	transitions	can	be	scheduled



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

Other	optimizations

25

• Canary	disks
• Canaries	can	be	encoded	in	conservative	redundancy	schemes
• 2000	for	detecting	end	of	infancy	&	1000	for	detecting	wearout

• Useful	life	AFR	buffer
• Buffer	helps	protect	against	jitter	in	AFR	during	useful	life
• Buffer	also	helps	in	exercising	caution	when	tuning	redundancy

• Deciding	wearout	based	on	what																								can	tolerate	
• Useful	life	redundancy	scheme	chosen	on	basis	of	detected	AFR	
• Transition	to	wearout	based	on	what	the	scheme	can	tolerate

• Iterative	change	point	detection
• One-shot	change	point	detection	too	conservative
• More	data	=>	lower	useful	life	AFR	=>	greater	savings

ftdisk−g ro u p



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

The	Backblaze	dataset

26

• 100K+	HDDs	belonging	to	Backblaze:	a	backup	company
• Daily	reliability	statistics	from	mid	2013	-	mid	2019
• Open	sourced
• 7	drive	makes/models	with	signi7icant	number	of	disks	to	test:

Disk	Grp Num	Drives Num	Failed Age	so	far	(yrs)

S-4 36962 3535 6
H-4A 8708 137 6
H-4B 16316 207 5
S-8C 10150 275 3

S-8E 14716 331 2.5
S-12E 35435 735 1.5
H-12E 9680 10 0.5



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

HeART	in	action	on	a	disk-group

27

End	of		
infancy

Start	of		
wearout

Savings	region

S-4	AFR	details

Useful		
life	AFR

10K	disk	mark



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

HeART	in	action	on	a	disk-group

27

End	of		
infancy

Start	of		
wearout

Savings	region

S-4	AFR	details

Useful		
life	AFR

10K	disk	mark



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

HeART	+	Pacemaker	on	Backblaze

28

Baseline

6-of-9

Space savings

IO overheads

6-of-9

20-of-23 26-of-29
16-of-19

15-of-18 30-of-33
18-of-2117-of-20

13-of-16

12-of-15

Reconstruction IO
Schedulable re-encoding IO
Urgent re-encoding IO
Redundancy mgmt. IO cap
Avg. scrubbing IO

Infancy disks
Useful life disks
Wearout disks



Carnegie Mellon Saurabh	Kadekodi	©	January	2019

HeART	summary

29

• Exploiting	reliability	heterogeneity	reduces	storage	cost

• Overall	>20%	space	savings	observed	on	production	dataset

• Less	than	5%	IO	bandwidth	spent	in	redundancy	mgmt

• HeART:	an	online	heterogeneity-aware	redundancy	tuner
• actively	engages	with	disk	bathtub	curves
• built-in	online	anomaly	and	change	point	detector

• Pacemaker:	performs	ef7icient	redundancy	management	
• data	redistribution	instead	of	data	reencoding
• converts	urgent	redundancy	mgmt	IO	into	schedulable	IO



Carnegie Mellon Saurabh	Kadekodi	©	October	2019

References

30

1.	Xia,	Mingyuan,	et	al.	"A	Tale	of	Two	Erasure	Codes	in	HDFS."	FAST.	2015.
2.	Sathiamoorthy,	Maheswaran,	et	al.	"Xoring	elephants:	Novel	erasure	codes	for	big	
data."	VLDB.	2013.

3.	Guha,	Sudipto,	et	al.	"Robust	random	cut	forest	based	anomaly	detection	on	
streams."	ICML.	2016.

4.	Truong,	Charles,	Laurent	Oudre,	and	Nicolas	Vayatis.	"ruptures:	change	point	
detection	in	Python."	arXiv:1801.00826.	2018.

5.	Rashmi,	K.	V.,	et	al.	"A	hitchhiker's	guide	to	fast	and	efOicient	data	reconstruction	in	
erasure-coded	data	centers."	ACM	SIGCOMM	Computer	Communication	Review.	2015.



Carnegie Mellon Saurabh	Kadekodi	©	October	201931

“My	heart	is	in	the	work”

“My	work	is	in	the	HeART”


