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Cluster	storage	systems
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• Storage	subsystem	of	distributed	systems

• Thousands	to	millions	of	disks	in	primary	storage	tier

• Built	incrementally	according	to	demand
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Reliability	heterogeneity	in	disks
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• Disk	7leet	has	heterogeneous	collection	of	disks

•Different	in	reliability	
• Across	disks:	
- Manufacturing	differences	across	makes/models	
- Experiences:	different	vibration	/	temperature/	IO	churn	

• For	each	disk:	
- 3	reliability	phases	throughout	lifetime
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Overview	of	exploiting	reliability	heterogeneity
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• Data	redundancy	typically	same	across	disk	7leet
• E.g.,	3-replication:	3	copies	of	data	on	independent	devices

• Disks	from	same	storage	tier	vary	a	lot	in	failure	rates
• E.g.,	HDDs	from	different	makes/models	fail	differently

• Explicitly	consider	reliability	heterogeneity	in	deciding	redundancy

• HeART:	Heterogeneity	Aware	Redundancy	Tuner
• Tailors	redundancy	to	disk	failure	rate	heterogeneity

• A	safe,	accurate	and	online	framework

• Reduces	storage	overhead,	and	thus	cost

• Pacemaker:	regulating	the	HeART
• Manages	redundancy	management	overheads

• Perform	cheap	re-encoding

• Converts	urgent	re-encoding	tasks	into	schedulable	tasks

• HeART	+	Pacemaker	reduces	overall	storage	space	by	>	20%	[m(b)illions	$]
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Cluster	storage	system	reliability
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• Failures	common	in	today’s	cluster	storage	systems
• Disk	failures	measured	as	annualized	failure	rates	(AFR)

• AFR									expected	%	of	disk	failures	in	a	year	

• Popular	fault	tolerance	mechanism									redundancy
• Full	data	replication	(n-replication)
• Erasure	coding	(k-of-n:	k	data	chunks,	n-k	parity	chunks)

• Reliability	measured	in	mean-time-to-data-loss	(MTTDL)

• Redundancy	con7igurations	ignore	disk	AFR	differences
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Reliability	heterogeneity
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Backblaze	dataset	
5	yrs	of	HDD	reliability,	

100K+	disks
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Reliability	heterogeneity
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• HDD	failure	rates	vary	a	lot	in	the	7ield

• No	single	redundancy	scheme	is	good	enough	for	all	disks
• Conservative	redundancy									overprotection	for	strong	disk	types

• Lower	redundancy									subset	of	disks	risk	data	loss
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Exploiting	reliability	heterogeneity
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• Redundancy	decisions	informed	by	AFR	differences

• Challenges
1. Has	to	be	monitored	in	the	Oield

2. Disk	failure	rate	varies	over	its	lifetime

• Redundancy	tailoring	mechanism	needs	to	be:
• Safe:	prevent	under-redundancy	from	causing	data	loss

• Accurate:	identify	different	reliability	phases	correctly

• Online:	bene7its	only	realizable	during	disk’s	low	failure	rate
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The	bathtub	curve	(each	disk	group)
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Heteretogeneity-Aware	Redundancy	Tuner
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AFR	in	useful	life:	stability	&	anomalies
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• Useful	life	AFR	is	typically	stable,	within	reasonable	bounds

• External	factors	can	cause	simultaneous	bulk	failures
• Rack	power	failure,	accidents,	human	error,	etc.

• “Anomalies”	appear	like	(premature)	wearout
• Bene7its	proportional	to	length	of	useful	life
• Bulk	failures	may	not	re7lect	true	HDD	failure	rate
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Change	point	detection
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• Reliability	target	can	be	missed	if:
• Hasty	declaration	of	end	of	infancy
• Delayed	declaration	of	onset	of	wearout

• Tradeoff	between	extracting	bene7its	and	safety

• Use	online	change	point	detectors	to	identify	change	points
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• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

Redundancy	scheme	selection

17

ftdisk−g ro u p ftdefau lt
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• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

Redundancy	scheme	selection

17
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• 																							MTTDL	>=																	MTTDL	(default	AFR	=	16%)
- MTTDL:	mean	time	to	irrecoverable	data	loss

• Failures	tolerated	in																								>=	failures	tolerated	in	

Redundancy	scheme	selection
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HeART	is	possible,	but	is	it	feasible?
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• Data	gets	re-encoded	twice	for	each	disk
• Infancy	—>	useful	life
• Useful	life	—>	wearout

• Read—re-encode—write	cycle	can	be	very	expensive
• Re-encoding	1TB	disk	from	30-of-33	to	6-of-9	is	at	least	75TB	IO

• Re-encoding	IO	can	hurt	because	of	two	main	reasons:
• Wide	redundancy	schemes	used
• Too	many	disks	requiring	re-encoding	at	the	same	time
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Pacemaker:	regulating	the	HeART

Cheaper	reencoding

Pacemaker

Scheduling	background	work
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Data	reencoding	=	data	redistribution

22

• Recall	that	naive	read—re-encode—write	is	very	expensive
• k	x	disk	capacity	needs	to	be	read	and	written	

• Key	idea:	disks	change	failure	families,	it’s	data	need	not

• Moving	one	stripe	unit	cheaper	than	reencoding	entire	stripe
• Decouples	reencoding	IO	from	redundancy	scheme	used
• Moving	eliminates	the	computation	overhead,	only	generates	I/O

infancy useful	life wearout
Time

Disk	born Disk	decom
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Schedulable	background	work
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• Infancy	to	useful	life	transition	is	completely	schedulable
• Only	impacts	savings	because	of	reduced	useful	life

• Useful	life	to	wearout	is	urgent
• But	not	all	of	it…

• Key	observation:	not	all	disks	enter	wearout	together

• Incremental	disk	deployments	help	schedule	urgent	work
• Only	the	Oirst	disk	batch	used	to	detect	wearout	is	urgent
• Subsequent	disks	wearout	transitions	can	be	scheduled
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Other	optimizations
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• Canary	disks
• Canaries	can	be	encoded	in	conservative	redundancy	schemes
• 2000	for	detecting	end	of	infancy	&	1000	for	detecting	wearout

• Useful	life	AFR	buffer
• Buffer	helps	protect	against	jitter	in	AFR	during	useful	life
• Buffer	also	helps	in	exercising	caution	when	tuning	redundancy

• Deciding	wearout	based	on	what																								can	tolerate	
• Useful	life	redundancy	scheme	chosen	on	basis	of	detected	AFR	
• Transition	to	wearout	based	on	what	the	scheme	can	tolerate

• Iterative	change	point	detection
• One-shot	change	point	detection	too	conservative
• More	data	=>	lower	useful	life	AFR	=>	greater	savings

ftdisk−g ro u p
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The	Backblaze	dataset
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• 100K+	HDDs	belonging	to	Backblaze:	a	backup	company
• Daily	reliability	statistics	from	mid	2013	-	mid	2019
• Open	sourced
• 7	drive	makes/models	with	signi7icant	number	of	disks	to	test:

Disk	Grp Num	Drives Num	Failed Age	so	far	(yrs)

S-4 36962 3535 6
H-4A 8708 137 6
H-4B 16316 207 5
S-8C 10150 275 3

S-8E 14716 331 2.5
S-12E 35435 735 1.5
H-12E 9680 10 0.5
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HeART	in	action	on	a	disk-group
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HeART	+	Pacemaker	on	Backblaze
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Baseline
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Space savings

IO overheads

6-of-9

20-of-23 26-of-29
16-of-19
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13-of-16

12-of-15

Reconstruction IO
Schedulable re-encoding IO
Urgent re-encoding IO
Redundancy mgmt. IO cap
Avg. scrubbing IO

Infancy disks
Useful life disks
Wearout disks
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HeART	summary
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• Exploiting	reliability	heterogeneity	reduces	storage	cost

• Overall	>20%	space	savings	observed	on	production	dataset

• Less	than	5%	IO	bandwidth	spent	in	redundancy	mgmt

• HeART:	an	online	heterogeneity-aware	redundancy	tuner
• actively	engages	with	disk	bathtub	curves
• built-in	online	anomaly	and	change	point	detector

• Pacemaker:	performs	ef7icient	redundancy	management	
• data	redistribution	instead	of	data	reencoding
• converts	urgent	redundancy	mgmt	IO	into	schedulable	IO
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“My	heart	is	in	the	work”

“My	work	is	in	the	HeART”


