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18-847F: Special Topics in 
Computer Systems

Foundations of Cloud and Machine Learning 
Infrastructure
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Lecture 2: Review of Probability Theory

Foundations of Cloud and Machine Learning 
Infrastructure



Course Enrollment and Waitlist
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Capacity of the class is now increased to 35 (instead of 25)

Hopefully, a majority of waitlisted students will be cleared

Please contact Megan Oliver (moliver) regarding waitlists



Class Staff and Office Hours
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Instructor: Gauri Joshi (gaurij)

Office Location: CIC 4105

Office Hours: Right after class or by appointment

TAs: Abhishek Sawarkar (asawarka), Jianyu Wang (jianyuw1)

Office Hours: TBD



Class Hours and Website(s)
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o When: Mon, Wed 4:30-6:00 pm 

o Where: Scaife Hall 222

o Class Website (Readings, Schedule): 
https://www.andrew.cmu.edu/course/18-847F/

o Gradescope for Homework submissions



Graduate Seminar Class
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A Few Lectures

Concept-check Homeworks

Class Presentations and Discussion

In-class Quizzes



Lectures
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o Today Week: Probability Review

o Next week: Queueing and Scheduling

o Guest lectures during the semester by authors of 
papers relevant to this class



Graduate Seminar Class
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A Few Lectures

Concept-check Homeworks

Class Presentations and Discussion

In-class Quizzes



Homeworks (45%)
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o Concept-Check questions about the papers

o Programming questions

o Collaboration is okay but write your own answers, 
and list the collaborators 



Graduate Seminar Class
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A Few Lectures

Concept-check Homeworks

Class Presentations and Discussion

In-class Quizzes



Class Presentations (10%)
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o Sign up for presentation at least 2 weeks in advance

o Each student will present 1-2 times in the semester

o 25 min presentation, followed by 20 min discussion
o Motivation and Related work
o Summary of main results
o Your views on the paper



Tentative Grading Rubric (Total: 10 pts)
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o Motivation (2 pts)

o Clarity (2 pts)

o Correctness (3 pts)

o Engaging the audience (2 pts)

o Extra research, going beyond the paper (1 pts)

Sept 9th: Workshop on Effective Presentations

Presentations will be graded for following the guidelines 

given in the workshop



Class Participation (10%)
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o Participation in Class Discussions 

o Attendance and attention 

o Insightful Questions/Comments



Graduate Seminar Class
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A Few Lectures

Concept-check Homeworks

Class Presentations and Discussion

In-class Quizzes



In-class Quizzes (35%)

15

o 3 quizzes during the semester

o Checking your understanding of the material

o Can refer to the papers during the quiz



In Summary..
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o Paper Reading
o Concept-Check Homeworks
o Class Presentations (1-2 in the semester)
o In-class Quizzes

You will learn..
o Latest cloud and ML infrastructure research
o How to read and critique research papers
o How to present effectively
o Some programming in TensorFlow/PyTorch



Topics Covered
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Cloud	Computing/Storage

Machine	Learning

Model	
replica

PARAMETER	SERVER
w’	=	w	– α	Δw

Model	
replica

Model	
replica

w Δw

a b a+b



Topics Covered
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o Scheduling in Parallel Computing

o MapReduce, Straggler Replication

o Task Replication in Queueing Systems

o Erasure Coding for Locality/Repair

Cloud	Computing/Storage

a b a+b



Topics Covered
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Machine	Learning

Model	
replica

PARAMETER	SERVER
w’	=	w	– α	Δw

Model	
replica

Model	
replica

w Δw

o SGD and its convergence

o Asynchronous and Local-Update SGD

o Gradient and Model Compression

o Hyper-parameter tuning



TO DO
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o Sign-up for presentation

o Start reading the papers



Aim of this Lecture

21

o Review undergraduate probability relevant to this class

o We will solve practice exercises during the class

o I will go fast, assuming knowledge of undergraduate 
probability. Please stop and ask questions if you don’t follow !
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Reference Textbooks



Discrete Random Variable
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Probability Mass Function PX (x) = Probability that X takes value x

1. Bernoulli: Ω = {heads, tails},  X(heads) = 1 , X(tails) = 0

2. Two-Dice Roll, Ω = {(1,1), (1,2), .. (6,6)}} 

X(n1, n2) = n1+ n2

Ω
R

X



Continuous Random Variable
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Examples of Continuous Random Variables: fX (x)

1. Exponential

2. Gaussian

Ω
R

X

fX(x) = µe�µx for all x � 0

fX(x) =
1p
2⇡�2

e�
(x�µ)2

2�2



Cumulative and Tail Distribution Functions
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Q1: What is the CDF and CCDF of X with the following PMF?

FX(x) = Pr(X  x)

Cumulative	Dist (CDF) Tail	Dist (CCDF)

F̄X(x) = Pr(X > x)

X =

8
><

>:

1 w.p. 0.5

2 w.p. 0.3

3 w.p. 0.2



Cumulative and Tail Distribution Functions
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Q2: What is the CDF and CCDF of X ~ exp(μ)? 

FX(x) = Pr(X  x)

Cumulative	Dist (CDF) Tail	Dist (CCDF)

F̄X(x) = Pr(X > x)

fX(x) = µe�µx for all x � 0



Cumulative and Tail Distribution Functions

27

Q2: What is the CDF and CCDF of X ~ exp(μ)?

FX(x) = Pr(X  x)

Cumulative	Dist (CDF) Tail	Dist (CCDF)

F̄X(x) = Pr(X > x)

FX(x) = 1� e�µx for all x � 0

F̄X(x) = e�µx for all x � 0



Expectation and Variance 
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Ω
R

X

E[X] =
X

x

xPr(X = x) = µX

Var[X] = E[(X � µx)
2]



Conditional Probability
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Ω
R

X

Pr(X = x|A) =
Pr(X \A)

Pr(A)

Two-dice Example: Given that both die rolls are <= 3, what is the 
probability that the sum is 5?

A



Conditional Probability
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Ω
R

Two-dice Example: Given that both die rolls are <= 3, what is the 
probability that the sum is 5?

A

B

Pr(A|B) =
Pr(A \B)

Pr(B)



Geometric Random Variable
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Example: Number of tosses of a coin with bias p (probability of 
H), until we get the first H

Pr(X = k) = (1� p)k�1p for all k = 1, 2, . . .



Geometric Random Variable
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Example: Number of tosses of a coin with bias p (probability of 
H), until we get the first H

Q: What is E[X]?

Pr(X = k) = (1� p)k�1p for all k = 1, 2, . . .



Geometric Random Variable
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Example: Number of tosses of a coin with bias p (probability of 
H), until we get the first H

Q: What is E[X]?
A: E[X] =  1/p

Pr(X = k) = (1� p)k�1p for all k = 1, 2, . . .



Geometric Random Variable
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Example: Number of tosses of a coin with bias p (probability of 
H), until we get the first H

Q: What is E[X]?
A: E[X] =  1/p

Memoryless Property: 

Pr(X > x+ s|X > s) = Pr(X > x) for all x, s � 0

Pr(X = k) = (1� p)k�1p for all k = 1, 2, . . .



Exercise: Coupon Collector’s Problem
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Given	n	different	coupons,	how	many	coupons	do	you	
expect	you	need	to	draw	with	replacement	before	having	
drawn	each	coupon	at	least	once?



Exercise: Coupon Collector’s Problem
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Given	n	different	coupons,	how	many	coupons	do	you	
expect	you	need	to	draw	with	replacement	before	having	
drawn	each	coupon	at	least	once?

# of Draws until we get the ith unique coupon

Pr(Xi = k) =

✓
i� 1

n

◆k�1 ✓n� i+ 1

n

◆
for all k = 1, 2, . . .



Exercise: Coupon Collector’s Problem
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Given	n	different	coupons,	how	many	coupons	do	you	
expect	you	need	to	draw	with	replacement	before	having	
drawn	each	coupon	at	least	once?

# of Draws until we get the ith unique coupon



Exercise: Coupon Collector’s Problem
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Given	n	different	coupons,	how	many	coupons	do	you	
expect	you	need	to	draw	with	replacement	before	having	
drawn	each	coupon	at	least	once?

# of Draws until we get the ith unique coupon

E[Xi] =
n

n� i+ 1

Pr(Xi = k) =

✓
i� 1

n

◆k�1 ✓n� i+ 1

n

◆
for all k = 1, 2, . . .



Exercise: Coupon Collector’s Problem
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Given	n	different	coupons,	how	many	coupons	do	you	
expect	you	need	to	draw	with	replacement	before	having	
drawn	each	coupon	at	least	once?

Expected # of Draws until we get n unique coupons

E[T ] = E[X1] + E[X2] + · · ·+ E[Xn]

=
n

n
+

n

n� 1
+ · · ·+ n

1
= nHn

' n log n



Exercise: Coupon Collector’s Problem
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Given	n	different	coupons,	how	many	coupons	do	you	
expect	you	need	to	draw	with	replacement	before	having	
drawn	each	coupon	at	least	once?

Expected # of Draws until we get n unique coupons

E[T ] = E[X1] + E[X2] + · · ·+ E[Xn]

=
n

n
+

n

n� 1
+ · · ·+ n

1
= nHn

' n log n



Example: Suppose you have n disks. Each dies independently 
with probability p every year

-State of a particular disk after one year?
Is it a random variable? If yes, which type?

-Number of disks that die in year one?
Is it a random variable? If yes, which type?

-Number of years until a particular disk dies?
Is it a random variable? If yes, which type?

Exercise: Review of Discrete r.v.s



Example: Suppose you have n disks. Each dies independently 
with probability p every year

-State of a particular disk after one year?
Is it a random variable? If yes, which type? Bernoulli

-Number of disks that die in year one?
Is it a random variable? If yes, which type?

-Number of years until a particular disk dies?
Is it a random variable? If yes, which type?

Exercise: Review of Discrete r.v.s



Example: Suppose you have n disks. Each dies independently 
with probability p every year

-State of a particular disk after one year?
Is it a random variable? If yes, which type? Bernoulli

-Number of disks that die in year one?
Is it a random variable? If yes, which type? Binomial

-Number of years until a particular disk dies?
Is it a random variable? If yes, which type? Geometric

Exercise: Review of Discrete r.v.s



Continuous Random Variable
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Examples of Continuous Random Variables: fX (x)

1. Exponential

2. Gaussian

Ω
R

X

fX(x) = µe�µx for all x � 0

fX(x) =
1p
2⇡�2

e�
(x�µ)2

2�2



Exponential Random Variable
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Expected Value and Variance: E[X] = 1/λ ,  Var[X] = 1/λ2

Memoryless Property: 

Pr(X > x+ s|X > s) = Pr(X > x) for all x, s � 0

fX(x) = �e��x for all x � 0



Poisson Random Variable
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Expected Value and Variance: E[X] = λ ,  Var[X] = λ

Poisson Process: Given a time interval T and rate λ, the number of Poisson 

events that occur in that interval is X such that

Inter-arrival times of a Poisson process are exponential 

Pr(X = k) = e���
k

k!

Pr(X = k) = e��T (�T )k

k!



Exercise: Poisson Random Variable
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Overflow floods occur on a river once every 100 years on average. Calculate the probability 

of k = 0, 1, 2 floods in a 100-year interval given that floods follow a Poisson Process

Pr(X = k) = e���
k

k!



Exercise: Poisson Random Variable
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Overflow floods occur on a river once every 100 years on average. Calculate the probability 

of k = 0, 1, 2 floods in a 100-year interval given that floods follow a Poisson Process

Pr(X=0) = e-1 ~ 0.368

Pr(X = k) = e���
k

k!



Exercise: Poisson Random Variable
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Overflow floods occur on a river once every 100 years on average. Calculate the probability 

of k = 0, 1, 2 floods in a 100-year interval given that floods follow a Poisson Process

Pr(X=0) = e-1 ~ 0.368

Pr(X = 1) = e-1 ~ 0.368

Pr(X = 2) = e-1/2 = ~ 0.184

Pr(X = k) = e���
k

k!



Order Statistics

Suppose we have n random variables X1, X2, ..Xn

Order-statistics are obtained by ordering the random variables

For i.i.d. random variables X1, X2, ..Xn we denote the order 
statistics by

50

X(1)  X(2)  · · ·  X(n)

min(X1, . . . Xn) max(X1, . . . Xn)

= =

X1:n, X2:n, . . . Xn:n



Order Statistics

Consider n i.i.d. exponentially distributed random variables X1,
X2, ..Xn with rate μ where

for x > 0 

o What is ?

o What is ?

o What is ?  

51



Order Statistics

Consider n i.i.d. exponentially distributed random variables X1,
X2, ..Xn with rate μ where

for x > 0 

o What is ?

o What is ?

o What is ?  

52



Discrete-time Markov Chains
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A DTMC is a stochastic process X1, .. Xn where the n-th state Xn is 

independent of the past history, given the state Xn-1

Working

0.05

0.4

Broken 0.60.95

Example: A machine is ‘working’ or ‘broken’. If it is working 

today, it will work tomorrow 95% of times. If it is broken today, 

there is a 40% chance that it will be working tomorrow



Transition Probability Matrix
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Working

0.05

0.4

Broken 0.60.95

P

(Pn(W ) Pn(B)) = (Pn�1(W ) Pn�1(B))

✓
0.95 0.05
0.4 0.6

◆



Transition Probability Matrix
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Working

0.05

0.4

Broken 0.60.95

P

(Pn(W ) Pn(B)) = (P0(W ) P0(B))

✓
0.95 0.05
0.4 0.6

◆n

(Pn(W ) Pn(B)) = (Pn�1(W ) Pn�1(B))

✓
0.95 0.05
0.4 0.6

◆



Steady-state Distribution
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Working

0.05

0.4

Broken 0.60.95

If we go away for a long time, and then come back and look at 

the machine, what is the probability that it will be working?

(Pn(W ) Pn(B)) = (P0(W ) P0(B))

✓
0.888 0.111
0.888 0.111

◆



How to Find the Steady-state Distribution?
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Working

0.05

0.4

Broken 0.60.95

If we go away for a long time, and then come back and look at 

the machine, what is the probability that it will be working?

⇡W + ⇡B = 1

(⇡W ⇡B) = (⇡W ⇡B)

✓
0.95 0.05
0.4 0.6

◆



Exercise: Two Umbrella Problem
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A professor has 2 umbrellas that she uses when commuting between home 
and office. If it is raining and an umbrella is available at her location she takes 
it. If it is not raining, she does not take the umbrella. Suppose it rains with 
probability p every time she commutes, what is the probability that she 
won’t have an umbrella during her commute.



Exercise: Two Umbrella Problem
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A professor has 2 umbrellas that she uses when commuting between home 
and office. If it is raining and an umbrella is available at her location she takes 
it. If it is not raining, she does not take the umbrella. Suppose it rains with 
probability p every time she commutes, what is the probability that she 
won’t have an umbrella during her commute.

0

1

1-p

2 1-p1

p

p



Exercise: Two Umbrella Problem
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A professor has 2 umbrellas that she uses when commuting between home 
and office. If it is raining and an umbrella is available at her location she takes 
it. If it is not raining, she does not take the umbrella. Suppose it rains with 
probability p every time she commutes, what is the probability that she 
won’t have an umbrella during her commute.

0

1

1-p

2 1-p1

p

p

ANSWER: p⇥ 1� p

3� p



Exercise: Two Umbrella Problem
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A professor has 2 umbrellas that she uses when commuting between home 
and office. If it is raining and an umbrella is available at her location she takes 
it. If it is not raining, she does not take the umbrella. Suppose it rains with 
probability p every time she commutes, what is the probability that she 
won’t have an umbrella during her commute.

0

1

1-p

2 1-p1

p

p

ANSWER: p⇥ 1� p

3� p

Google’s	PageRank	algorithm	is	also	a	DTMC	problem



Continuous-time Markov Chains
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Instead of discrete-time transitions X1, .. Xn, here the transitions 

can occur at any time t. The time spent in any state is 

exponential with rate vi ,which is the rate of exiting that state

Working

0.05

0.4

Broken



Continuous-time Markov Chains
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Instead of discrete-time transitions X1, .. Xn, here the transitions 

can occur at any time t. The time spent in any state is 

exponential with rate vi ,which is the rate of exiting that state

Working

0.05 d

0.4 d

Broken

Equivalent	Discrete-time	Model

1- 0.4 d0.95 d



Steady-state Analysis
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Instead of discrete-time transitions X1, .. Xn, here the transitions 

can occur at any time t. The time spent in any state is 

exponential with rate vi ,which is the rate of exiting that state

Steady-state	Rate	of	exiting	a	state	=	Steady-state	Rate	of	entering	the	state

Working

0.05

0.4

Broken



Probability Review Summary
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o Random variables, CDF, CCDF, Expectation, Variance

o Geometric Random Variable, Coupon Collector Problem

o Exponential Random Variable, Poisson Random Variable

o Order Statistics

o Discrete-time Markov Chains, Steady-state analysis

o Continuous-time Markov Chains


