18-847F: Special Topics in Computer Systems

Foundations of Cloud and Machine Learning Infrastructure

Lecture 2: Review of Probability Theory

Foundations of Cloud and Machine Learning Infrastructure

Course Enrollment and Waitlist

Capacity of the class is now increased to 35 (instead of 25)

Hopefully, a majority of waitlisted students will be cleared

Please contact Megan Oliver (moliver) regarding waitlists

Class Staff and Office Hours

Instructor: Gauri Joshi (gaurij)

Office Location: CIC 4105

Office Hours: Right after class or by appointment

TAs: Abhishek Sawarkar (asawarka), Jianyu Wang (jianyuwı) Office Hours: TBD

Class Hours and Website(s)

- When: Mon, Wed 4:30-6:00 pm
- Where: Scaife Hall 222
- Class Website (Readings, Schedule): <u>https://www.andrew.cmu.edu/course/18-847F/</u>
- Gradescope for Homework submissions

Graduate Seminar Class

A Few Lectures

Concept-check Homeworks

Class Presentations and Discussion

In-class Quizzes

Lectures

- Today Week: Probability Review
- Next week: Queueing and Scheduling
- Guest lectures during the semester by authors of papers relevant to this class

Graduate Seminar Class

A Few Lectures

Concept-check Homeworks

Class Presentations and Discussion

In-class Quizzes

Homeworks (45%)

- Concept-Check questions about the papers
- Programming questions
- Collaboration is okay but write your own answers, and list the collaborators

Graduate Seminar Class

A Few Lectures

Concept-check Homeworks

Class Presentations and Discussion

In-class Quizzes

Class Presentations (10%)

- Sign up for presentation at least 2 weeks in advance
- Each student will present 1-2 times in the semester
- o 25 min presentation, followed by 20 min discussion
 - Motivation and Related work
 - Summary of main results
 - Your views on the paper

Tentative Grading Rubric (Total: 10 pts)

- Motivation (2 pts)
- Clarity (2 pts)
- Correctness (3 pts)
- Engaging the audience (2 pts)
- Extra research, going beyond the paper (1 pts)

Sept 9th: Workshop on Effective Presentations Presentations will be graded for following the guidelines given in the workshop

Class Participation (10%)

- Participation in Class Discussions
- Attendance and attention
- Insightful Questions/Comments

Graduate Seminar Class

A Few Lectures

Concept-check Homeworks

Class Presentations and Discussion

In-class Quizzes

In-class Quizzes (35%)

- 3 quizzes during the semester
- Checking your understanding of the material
- Can refer to the papers during the quiz

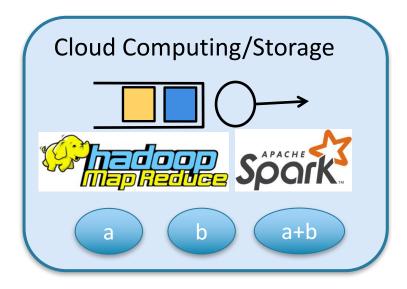
In Summary..

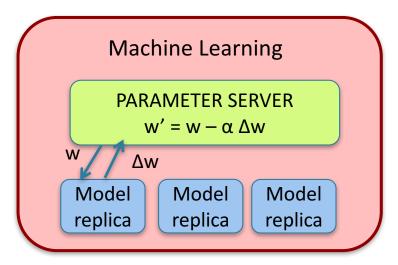
- Paper Reading
- Concept-Check Homeworks
- Class Presentations (1-2 in the semester)
- In-class Quizzes

You will learn..

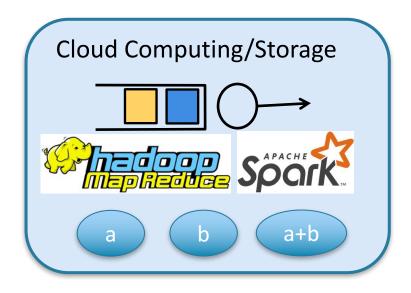
- Latest cloud and ML infrastructure research
- How to read and critique research papers
- How to present effectively
- Some programming in TensorFlow/PyTorch

Topics Covered





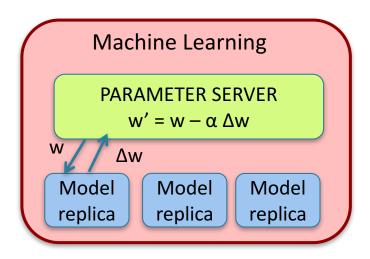
Topics Covered



- Scheduling in Parallel Computing
- MapReduce, Straggler Replication
- Task Replication in Queueing Systems
 - Erasure Coding for Locality/Repair

Topics Covered

- SGD and its convergence
- Asynchronous and Local-Update SGD
 - o Gradient and Model Compression
 - Hyper-parameter tuning



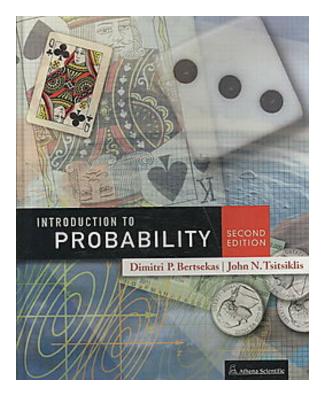
TO DO

- Sign-up for presentation
- \circ Start reading the papers

Aim of this Lecture

- Review undergraduate probability relevant to this class
- \circ We will solve practice exercises during the class
- I will go fast, assuming knowledge of undergraduate probability. Please stop and ask questions if you don't follow !

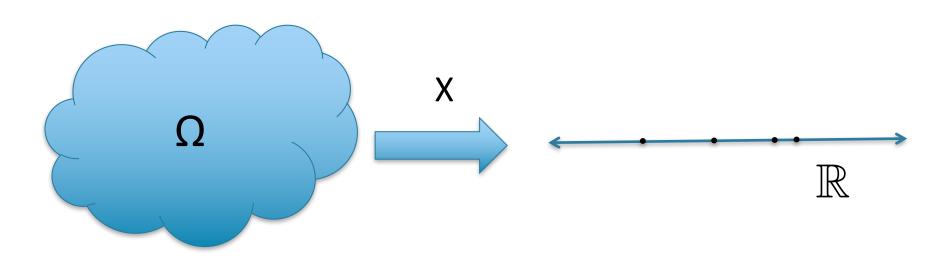
Reference Textbooks



A First Course in PROBABILITY

SHELDON ROSS

Discrete Random Variable

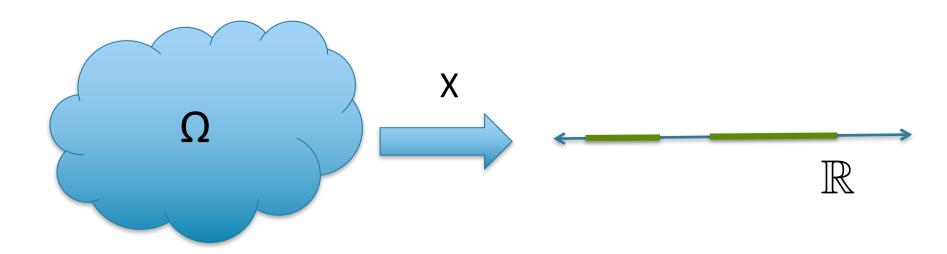


Probability Mass Function $P_X(x)$ = Probability that X takes value x

- 1. Bernoulli: $\Omega = \{\text{heads, tails}\}, X(\text{heads}) = 1, X(\text{tails}) = 0$
- 2. Two-Dice Roll, $\Omega = \{(1,1), (1,2), \dots (6,6)\}\}$

 $X(n_1, n_2) = n_1 + n_2$

Continuous Random Variable



Examples of Continuous Random Variables: $f_{\chi}(x)$

1. Exponential $f_X(x) = \mu e^{-\mu x}$ for all $x \ge 0$

2. Gaussian
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Cumulative and Tail Distribution Functions

Cumulative Dist (CDF) Tail Dist (CCDF)

 $F_X(x) = \Pr(X \le x) \qquad \bar{F}_X(x) = \Pr(X > x)$

Q1: What is the CDF and CCDF of X with the following PMF?

$$X = \begin{cases} 1 & \text{w.p. } 0.5 \\ 2 & \text{w.p. } 0.3 \\ 3 & \text{w.p. } 0.2 \end{cases}$$

Cumulative and Tail Distribution Functions

Cumulative Dist (CDF) Tail Dist (CCDF)

 $F_X(x) = \Pr(X \le x) \qquad \bar{F}_X(x) = \Pr(X > x)$

Q2: What is the CDF and CCDF of X ~ $exp(\mu)$?

$$f_X(x) = \mu e^{-\mu x}$$
 for all $x \ge 0$

Cumulative and Tail Distribution Functions

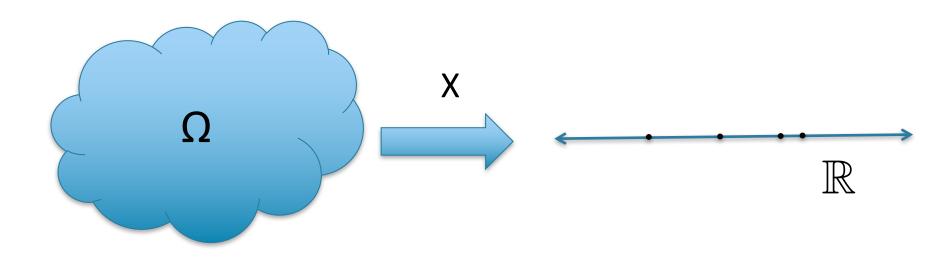
Cumulative Dist (CDF) Tail Dist (CCDF)

 $F_X(x) = \Pr(X \le x) \qquad \bar{F}_X(x) = \Pr(X > x)$

Q2: What is the CDF and CCDF of X ~ $exp(\mu)$?

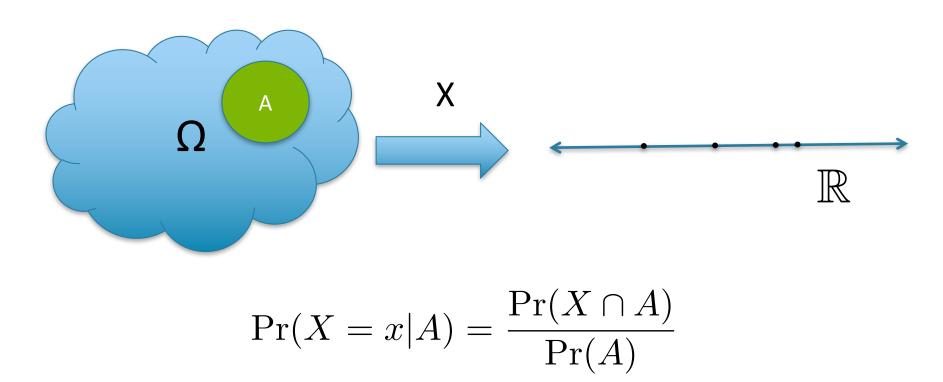
$$F_X(x) = 1 - e^{-\mu x}$$
 for all $x \ge 0$
 $\bar{F}_X(x) = e^{-\mu x}$ for all $x \ge 0$

Expectation and Variance



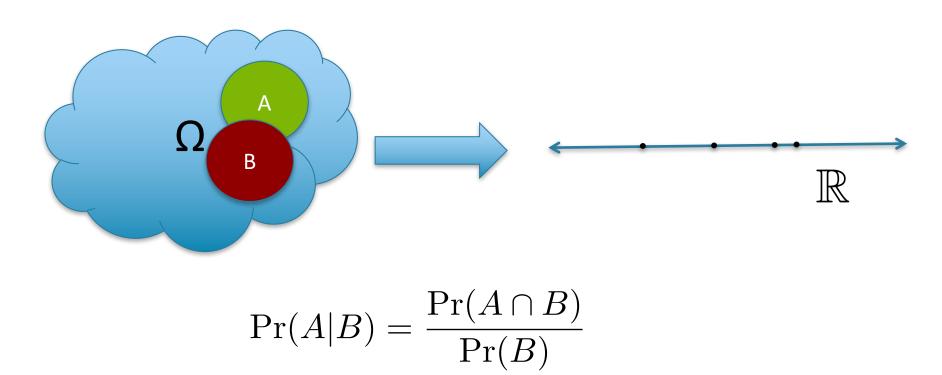
$$\mathbb{E}[X] = \sum_{x} x \Pr(X = x) = \mu_X$$
$$\operatorname{Var}[X] = \mathbb{E}[(X - \mu_x)^2]$$

Conditional Probability



Two-dice Example: Given that both die rolls are <= 3, what is the probability that the sum is 5?

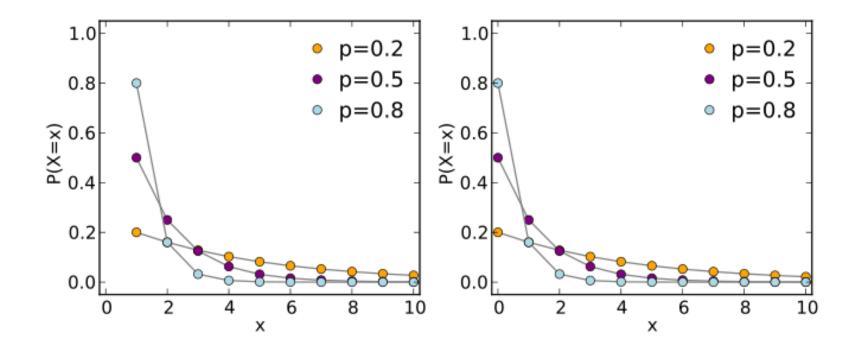
Conditional Probability



Two-dice Example: Given that both die rolls are <= 3, what is the probability that the sum is 5?

$$\Pr(X = k) = (1 - p)^{k - 1} p$$
 for all $k = 1, 2, ...$

Example: Number of tosses of a coin with bias p (probability of H), until we get the first H



$$\Pr(X = k) = (1 - p)^{k - 1} p$$
 for all $k = 1, 2, ...$

Example: Number of tosses of a coin with bias p (probability of H), until we get the first H

Q: What is E[X]?

$$\Pr(X = k) = (1 - p)^{k - 1} p$$
 for all $k = 1, 2, ...$

Example: Number of tosses of a coin with bias p (probability of H), until we get the first H

Q: What is E[X]? A: E[X] = 1/p

$$\Pr(X = k) = (1 - p)^{k - 1} p$$
 for all $k = 1, 2, ...$

Example: Number of tosses of a coin with bias p (probability of H), until we get the first H

Q: What is E[X]? A: E[X] = 1/p

Memoryless Property:

 $\Pr(X > x + s | X > s) = \Pr(X > x) \text{ for all } x, s \ge 0$

Exercise: Coupon Collector's Problem

Given n different coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once?

Exercise: Coupon Collector's Problem

Given n different coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once?

of Draws until we get the ith unique coupon

$$\Pr(X_i = k) = \left(\frac{i-1}{n}\right)^{k-1} \left(\frac{n-i+1}{n}\right) \quad \text{for all } k = 1, 2, \dots$$

Given n different coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once?

of Draws until we get the ith unique coupon

Given n different coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once?

of Draws until we get the ith unique coupon

$$\Pr(X_i = k) = \left(\frac{i-1}{n}\right)^{k-1} \left(\frac{n-i+1}{n}\right) \quad \text{for all } k = 1, 2, \dots$$

$$\mathbb{E}[X_i] = \frac{n}{n-i+1}$$

Given n different coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once?

Expected # of Draws until we get n unique coupons

$$\mathbb{E}[T] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_n]$$

Given n different coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once?

Expected # of Draws until we get n unique coupons

$$\mathbb{E}[T] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_n]$$
$$= \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{1}$$
$$= nH_n$$
$$\simeq n \log n$$

Exercise: Review of Discrete r.v.s

Example: Suppose you have n disks. Each dies independently with probability p every year

-State of a particular disk after one year? Is it a random variable? If yes, which type?

-Number of disks that die in year one? Is it a random variable? If yes, which type?

-Number of years until a particular disk dies? Is it a random variable? If yes, which type?

Exercise: Review of Discrete r.v.s

Example: Suppose you have n disks. Each dies independently with probability p every year

-State of a particular disk after one year? Is it a random variable? If yes, which type? Bernoulli

-Number of disks that die in year one? Is it a random variable? If yes, which type?

-Number of years until a particular disk dies? Is it a random variable? If yes, which type?

Exercise: Review of Discrete r.v.s

Example: Suppose you have n disks. Each dies independently with probability p every year

-State of a particular disk after one year?

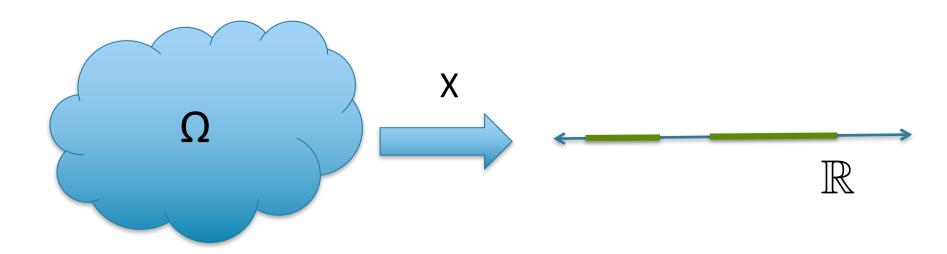
Is it a random variable? If yes, which type? Bernoulli

-Number of disks that die in year one?

Is it a random variable? If yes, which type? Binomial

-Number of years until a particular disk dies? Is it a random variable? If yes, which type? Geometric

Continuous Random Variable

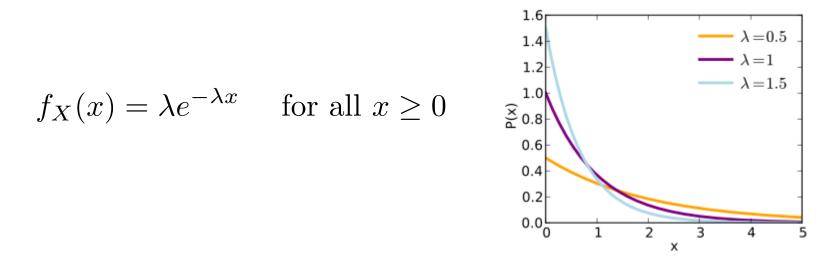


Examples of Continuous Random Variables: $f_{\chi}(x)$

1. Exponential $f_X(x) = \mu e^{-\mu x}$ for all $x \ge 0$

2. Gaussian
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Exponential Random Variable

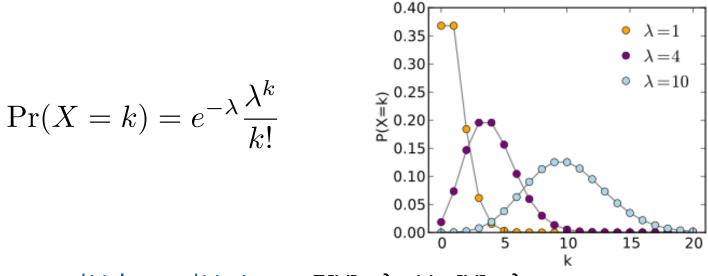


Expected Value and Variance: $E[X] = 1/\lambda$, $Var[X] = 1/\lambda^2$

Memoryless Property:

$$\Pr(X > x + s | X > s) = \Pr(X > x) \text{ for all } x, s \ge 0$$

Poisson Random Variable

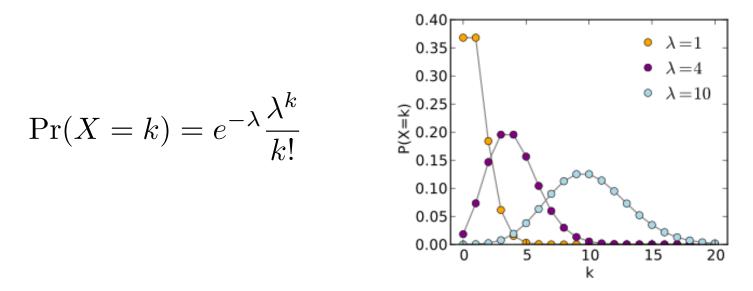


Expected Value and Variance: $E[X] = \lambda$, $Var[X] = \lambda$

Poisson Process: Given a time interval T and rate λ , the number of Poisson events that occur in that interval is X such that $\Pr(X = k) = e^{-\lambda T} \frac{(\lambda T)^k}{k!}$

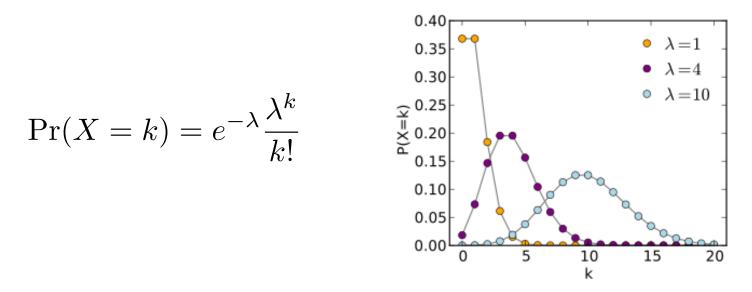
Inter-arrival times of a Poisson process are exponential

Exercise: Poisson Random Variable



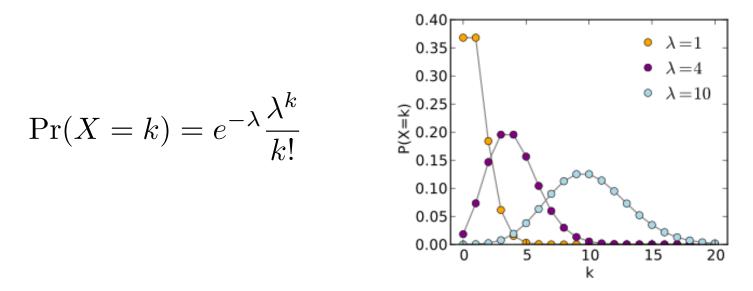
Overflow floods occur on a river once every 100 years on average. Calculate the probability of k = 0, 1, 2 floods in a 100-year interval given that floods follow a Poisson Process

Exercise: Poisson Random Variable



Overflow floods occur on a river once every 100 years on average. Calculate the probability of k = 0, 1, 2 floods in a 100-year interval given that floods follow a Poisson Process $Pr(X=0) = e^{-1} \sim 0.368$

Exercise: Poisson Random Variable



Overflow floods occur on a river once every 100 years on average. Calculate the probability of k = 0, 1, 2 floods in a 100-year interval given that floods follow a Poisson Process $Pr(X=0) = e^{-1} \sim 0.368$ $Pr(X=1) = e^{-1} \sim 0.368$

 $Pr(X = 2) = e^{-1}/2 = ~ 0.184$

Order Statistics

Suppose we have n random variables $X_1, X_2, ... X_n$

Order-statistics are obtained by ordering the random variables

$$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$$

$$\|$$

$$\|$$

$$\min(X_1, \dots, X_n) \qquad \max(X_1, \dots, X_n)$$

For i.i.d. random variables $X_1, X_2, ... X_n$ we denote the order statistics by

$$X_{1:n}, X_{2:n}, \dots X_{n:n}$$

Order Statistics

Consider n i.i.d. exponentially distributed random variables X_1 , X_2 , .. X_n with rate μ where

$$f_X(x) = \mu e^{-\mu x} \quad \text{for x > o}$$

• What is
$$\mathbb{E}[X_{1:n}] = \mathbb{E}[\min(X_1, X_2, \dots, X_n)]$$
?

• What is $\mathbb{E}[X_{n:n}] = \mathbb{E}[\max(X_1, X_2, \dots, X_n)]$?

 \circ What is $\mathbb{E}[X_{k:n}]$?

Order Statistics

Consider n i.i.d. exponentially distributed random variables X_1 , X_2 , ... X_n with rate μ where

$$f_X(x) = \mu e^{-\mu x}$$
 for x > o

$$\circ$$
 What is $\mathbb{E}[X_{1:n}] = \mathbb{E}[\min(X_1, X_2, \dots X_n)]?$ $\frac{1}{n\mu}$

• What is
$$\mathbb{E}[X_{n:n}] = \mathbb{E}[\max(X_1, X_2, \dots, X_n)]?$$

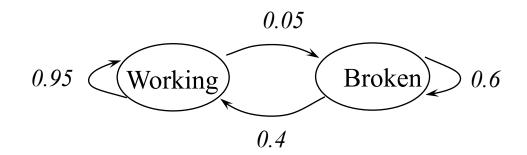
 $\frac{1}{n\mu} + \frac{1}{(n-1)\mu} + \dots \frac{1}{\mu} \sim \frac{\log n}{\mu}$
• What is $\mathbb{E}[X_{k:n}]$?

$$\frac{1}{n\mu} + \frac{1}{(n-1)\mu} + \dots \frac{1}{(n-k+1)\mu} \sim \frac{1}{\mu} \log \frac{n}{n-k}$$

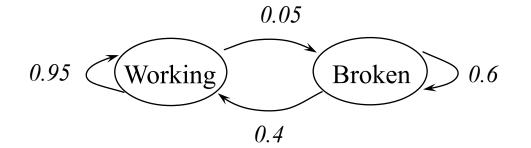
Discrete-time Markov Chains

A DTMC is a stochastic process X_1 , ... X_n where the n-th state X_n is independent of the past history, given the state X_{n-1}

Example: A machine is 'working' or 'broken'. If it is working today, it will work tomorrow 95% of times. If it is broken today, there is a 40% chance that it will be working tomorrow

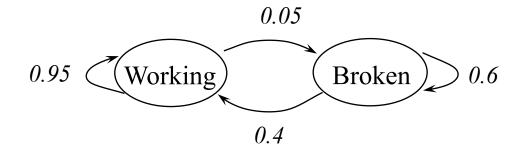


Transition Probability Matrix



$$(P_n(W) \ P_n(B)) = (P_{n-1}(W) \ P_{n-1}(B)) \left(\begin{array}{ccc} 0.95 & 0.05\\ 0.4 & 0.6 \end{array}\right)$$

Transition Probability Matrix



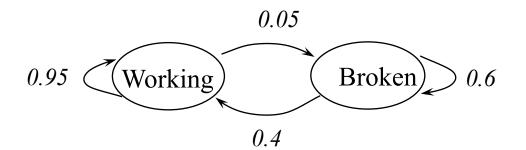
$$(P_n(W) \ P_n(B)) = (P_{n-1}(W) \ P_{n-1}(B)) \begin{pmatrix} 0.95 & 0.05 \\ 0.4 & 0.6 \end{pmatrix}$$

$$\mathbf{P}$$

$$(P_n(W) \ P_n(B)) = (P_0(W) \ P_0(B)) \left(\begin{array}{ccc} 0.95 & 0.05 \\ 0.4 & 0.6 \end{array}\right)^n$$

Steady-state Distribution

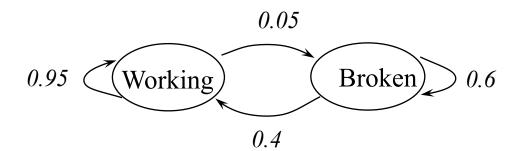
If we go away for a long time, and then come back and look at the machine, what is the probability that it will be working?



$$(P_n(W) \ P_n(B)) = (P_0(W) \ P_0(B)) \left(\begin{array}{cc} 0.888 & 0.111\\ 0.888 & 0.111 \end{array}\right)$$

How to Find the Steady-state Distribution?

If we go away for a long time, and then come back and look at the machine, what is the probability that it will be working?

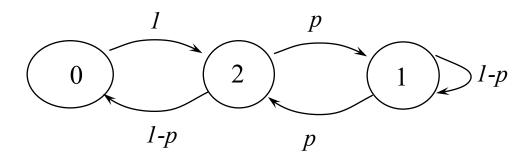


$$(\pi_W \ \pi_B) = (\pi_W \ \pi_B) \begin{pmatrix} 0.95 & 0.05 \\ 0.4 & 0.6 \end{pmatrix}$$

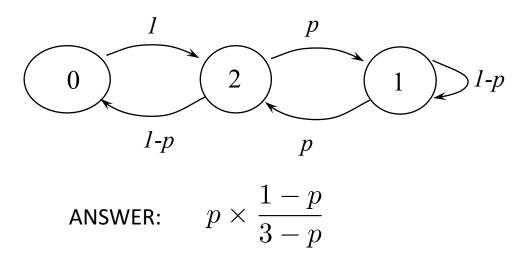
 $\pi_W + \pi_B = 1$

A professor has 2 umbrellas that she uses when commuting between home and office. If it is raining and an umbrella is available at her location she takes it. If it is not raining, she does not take the umbrella. Suppose it rains with probability p every time she commutes, what is the probability that she won't have an umbrella during her commute.

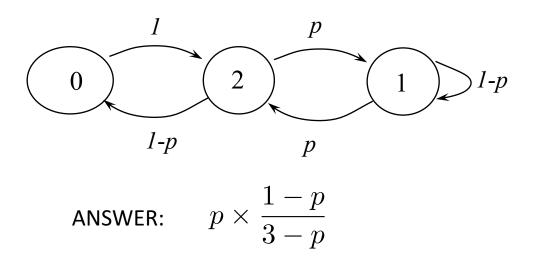
A professor has 2 umbrellas that she uses when commuting between home and office. If it is raining and an umbrella is available at her location she takes it. If it is not raining, she does not take the umbrella. Suppose it rains with probability p every time she commutes, what is the probability that she won't have an umbrella during her commute.



A professor has 2 umbrellas that she uses when commuting between home and office. If it is raining and an umbrella is available at her location she takes it. If it is not raining, she does not take the umbrella. Suppose it rains with probability p every time she commutes, what is the probability that she won't have an umbrella during her commute.



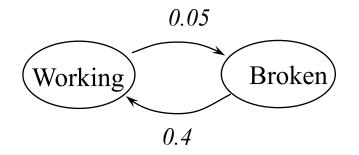
A professor has 2 umbrellas that she uses when commuting between home and office. If it is raining and an umbrella is available at her location she takes it. If it is not raining, she does not take the umbrella. Suppose it rains with probability p every time she commutes, what is the probability that she won't have an umbrella during her commute.



Google's PageRank algorithm is also a DTMC problem

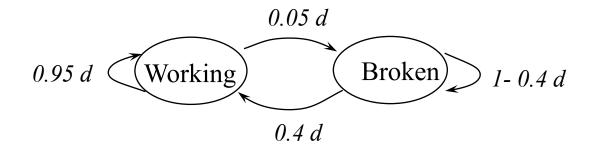
Continuous-time Markov Chains

Instead of discrete-time transitions X_1 , ... X_n , here the transitions can occur at any time t. The time spent in any state is exponential with rate v_i , which is the rate of exiting that state



Continuous-time Markov Chains

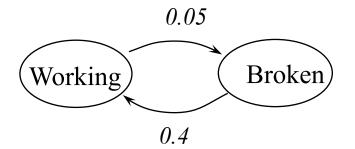
Instead of discrete-time transitions X_1 , ... X_n , here the transitions can occur at any time t. The time spent in any state is exponential with rate v_i , which is the rate of exiting that state



Equivalent Discrete-time Model

Steady-state Analysis

Instead of discrete-time transitions X_1 , ... X_n , here the transitions can occur at any time t. The time spent in any state is exponential with rate v_i , which is the rate of exiting that state



Steady-state Rate of exiting a state = Steady-state Rate of entering the state

Probability Review Summary

- Random variables, CDF, CCDF, Expectation, Variance
- o Geometric Random Variable, Coupon Collector Problem
- o Exponential Random Variable, Poisson Random Variable
- Order Statistics
- Discrete-time Markov Chains, Steady-state analysis
- Continuous-time Markov Chains