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Stochastic Gradient Descent

Stochastic gradient descent (SGD) is the

backbone of ML, especially deep learning
Loss incurred by the i-th sample

Initial point ‘

(\> Empirical Risk F(x) = %Zfz(x)
%

1
Mini-batchSGD Xk+1 = Xk — 7~ |§—k’ Z V1 (xk)
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|

Stochastic gradient
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Big Model, Big Data

Extremely high-dimensional parameters
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Training on a single machine
can takes several days or even weeks.

It is imperative to distribute SGD
across multiple machines!
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Extremely large training datasets



worker 1

worker 2

worker m

Classic Method: Fully Synchronous SGD

Execution pipeline:

1. Local stochastic gradients computation

Wall-clock time
C

X1

RdiEd|

r

Gradient at k-th iteration and i-th worker:

() _

g(xk; &,
J€€

\

Blue arrows: gradient computation time



Classic Method: Fully Synchronous SGD

Execution pipeline:

2. Average local models across all nodes

Wall-clock time

C >
X1 X2
worker 1 ‘
| c
(@)
worker 2 - = 1
: I 2 - E :x("’)
=
| € M=
) S
(@)
| (&)
worker m »

Blue arrows: gradient computation time

Communication can be implemented via:
All-Reduce

2

Goyal et al. Accurate, Large Mini-Batch
SGD: Training ImageNet in 1 Hour,
ArXiv preprint 2017

Parameter Server

78S

Li et al. Scaling Distributed Machine

Learning with the Parameter Server,
In OSDI 2014

Red blocks: communication time



Classic Method: Fully Synchronous SGD

Execution pipeline:

3. Repeat the above steps until convergence

Wall-clock time
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Communication

lluf

Communication
Communication

' ' ' o

1 t
Communication

l l |

'Cﬂ

e

Communication

(TS

worker m

= Blue arrows: gradient computationtime = Red blocks: communication time



worker 1

worker 2

Ideal:
11 iterations

worker m

[} X7
worker 1 ‘
| c c c c c c
S S S S S S .
worker 2 - E *g 5 *g ‘g ‘g Practice:
‘ = 2 E = S S 7 iterations
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worker m »
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= Blue arrows: gradient computationtime = Red blocks: communication time



Communication is the Bottleneck in DNN Training

In deep neural nets training, the communication time can be even larger

than com putation time. [Harlap et al. ArXiv preprint 2018; Wang and Joshi, SysML 2019]

Wall-clock time
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Communication is the Bottleneck in DNN Training

It is critical to develop[communication-efficient distributed SGD]

Wall-clock time
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X3

worker 1 |

worker 2 |

Communication
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Previous works

= Periodic Averaging SGD [ Local SGD

Stich, S.U., Local SGD Converges Fast and Communicates Little, In /CLR 2019
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Recall the Update Rule of Sync. SGD

Motivation of Periodic Averaging

Initial point X3 = (Computation) Worker nodes perform local steps
//E\\ xp, — g (xp; &)
b >

Gradient step

~===3% Communication step

11



Recall the Update Rule of Sync. SGD

Motivation of Periodic Averaging

Initial point X4 = (Computation) Worker nodes perform local steps
if X9 N\ Xk — 779(Xk7 é-]g&))
= (Communication) Local models are averaged across all the nodes
Xpp1 = — i [Xk — 1n9(Xk; (i))}
+ m £ ' Sk

Gradient step

Communication step
12



Recall the Update Rule of Sync. SGD

Motivation of Periodic Averaging

Initial point X1 = (Computation) Worker nodes perform local steps

i — ng(xp; €7)

"~ " (Communication) Local models are averaged across all the nodes

m

_ 1 . <vz>}
Xki+1 = mz {Xk 779(Xk, L )

1=1

[ Communicate at every iteration? ]

Gradient step

Communication step
13



Periodic Averaging SGD (PASGD)
[Stich ICLR 2019]

Initial point X1

= Workers perform t local updates

* |Local models are averaged after every 7 local steps

|

Communication period

Gradient step

~==% Communication step
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Periodic Averaging Can
Greatly Reduce Training Time

Blue arrow: gradient computation time

Red block: communication time

Sync. SGD

Wall-clock time .
. end time

‘éﬁ

worker 1

worker 2

l

Communication

M 2

sy
T
I L1
Huv
(T4 §

worker m

[HY
U



Periodic Averaging Can x - 7
Greatly Reduce Training Time a

Blue arrow: gradient computation time

Q Communication delay is reduced by 7 times

Red block: communication time

PASGD Sync. SGD

Wall-clock time ) .
. end time end time
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Previous works

- s A . =

* Periodic Averaging SGD / Local SGD

= Elastic Averaging SGD

Zhang, S. et al., Deep Learning with Elastic Averaging SGD, In NeurIPS 2015
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Elastic Averaging SGD (EASGD)
[Zhang et al. NeurIPS 2015]

Initial point Z1

A\ * Key Idea: Local models are guided towards

Y

to an anchor model after every t local steps

<

Gradient step

Communication step

"—’ Anchor model update

18



Elastic Averaging SGD (EASGD)
[Zhang et al. NeurIPS 2015]

Initial point Z;

= Key Idea: Local models are guided towards

to an anchor model after every t local steps

i
I
v = Workers update rule:
(%)

X](jj_T — (1 —a)x,,, +az

|

Elasticity parameter

Gradient step

Communication step

~e=—»  Anchor model update
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Elastic Averaging SGD (EASGD)

Initial point Z1

Gradient step

Communication step

~e=—»  Anchor model update

[Zhang et al. NeurIPS 2015]

= Key Idea: Local models are guided towards

to an anchor model after every t local steps

= Workers update rule:

X](Q_T — (1— a)x,(;}ﬁ + oz

= Anchor update rule:

Zit+r < (1 —ma)zg + aZX,(:J)FT
i=1

20



Elastic Averaging SGD (EASGD)
[Zhang et al. NeurIPS 2015]

Initial point Z1

= Key Idea: Local models are guided towards

to an anchor model after every t local steps

Q Communication delay is reduced by 7 times

XConvergence analysis

= Limited in quadratic objective function

Gradient step

= How to select the elasticity parameter o?

—w==% Communication step
-"—" Anchor model update 21



Previous works

- s Ao . =

= Periodic Averaging SGD [ Local SGD

= Elastic Averaging SGD

= Decentralized Parallel SGD

Lian, X. et al., Can Decentralized Algorithms Outperform Centralized Algorithms?, In NeurIPS 2017 (oral)
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Model Dependencies in Fully Sync. SGD

Motivation of Decentralized Averaging

m

_ 1 . <i>}
Xk+1 = mz {Xk ng(Xx; &)

1=1

* |nsync. SGD, each worker requires

information from all others

[Communicate with all others? ]

Model Dependency Graph

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4
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Decentralized Parallel SGD (D-PSGD)

[Lian et al. NeurlIPS 2017]

Model Dependency Graph

Xk_|_1 Z Wi |x [ ) (Xg),f(ﬁ)]

JEN; Worker 1 Worker 1

Key Idea:
Worker 2 Worker 2
= Each worker requires information

from very few neighbors Worker 3 Worker 3

Worker ¢4 Worker 4

24



Decentralized Averaging Can
Greatly Reduce Training Time

Blue arrow: gradient computation time

Red block: communication time

Sync. SGD
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Decentralized Averaging Can
Greatly Reduce Training Time

Blue arrow: gradient computation time

Red block: communication time Q Reduce communication compIeX|ty

D-PSGD Sync. SGD
end time endtime

Wall-clock time
@

-

worker 1

worker 2

Communication
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Communication
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i
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worker m
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Common Thread in Previous Works:
Sparse Model-Averaging

(
= Periodic Averaging SGD [ Local SGD

Stich, S.U., Local SGD Converges Fast and Communicates Little, In /CLR 2019 Tem poral-spa rse

communication

= Elastic Averaging SGD

Zhang, S. et al., Deep Learning with Elastic Averaging SGD, In NeurIPS 2015

\(

= Decentralized Parallel SGD Spatial-sparse

Lian, X. et al., Can Decentralized Algorithms Outperform Centralized Algorithms?, In Neur/PS 2 communication

?
What else: -

\_




Common Thread in Previous Works:
Sparse Model-Averaging

(
= Pe

XC livataglip sayeKsassGD
®. Hasstrong boonded gradiantassemptions Temporal-sparse

* ElagtigpAveraging SGD _
x Limited in quadratic case

Stic

communication

\_ Zhag, ¥ et al., Deep Learning with Elastic Averaging SGD, In Neur/PS 2015
4 . .
= De ralized Parallel SGD Spatial-sparse
| Only fort=1 _ _ _
S LiapXW8t al., Can Decentralized Algorithms Outperform Centralized Algorithms?, In Neur/PS 2 communication

What else? -



Our Solution: Cooperative SGD

A General Framework for
= Design
= Analysis

of communication-efficient distributed SGD algorithms

29



Key Elements in Cooperative SGD Framework

= \Workers have different local model versions
Anchor models in EASGD

Xk :[XS), . X,im), z,il), . z,iv)]

Y Y

* |Local updates at m workers, no updates to auxiliary variables
1 m
G, = [g(x,g>),...,g(x,§ >),o,...,o}

* Synchronization matrix  mixing matrix (spatial-sparsity)
W, kmod 1T=20
Wi {

. Communication period

Limtv)x(myv), otherwise (temporal-sparsity)

Update Rule X1 = (X — nGr) Wk

30



Previous Algorithms Are Just Special Cases

mixing matrix (spatial-sparsity)

A(1, W, v)

Communication period  # of auxiliary variables
(temporal-sparsity)

_A(T 11T/m 0) = Periodic Averaging SGD /Local SGD

= Decentralized Parallel SGD

A(T,

)
A(1, W, 1) = Elastic Averaging SGD
,0)
A(1, 11T/m 0) = Fully Synchronous SGD

(Many more algorithms can be designed by varying hyper-parameters!)
31




Our Solution: Cooperative SGD

A General Framework for
= Design
* Analysis  Unified convergence analysis for all algorithms

of communication-efficient distributed SGD algorithms

32



Assumptions
Identical to sync. SGD analysis

(A1) Lipschitz smooth: ||VF(x) — VF(y)|| < L|x—y]
(A2) Unbiased gradient estimation: [E¢«[g(x;§)] = VF(x)

(A3) Bounded variance: E;, || g(x;&) — VF(x)HQ} < BVF ()| + o2

33



Assumptions (cont’d)

Constraints on mixing matrix

Requirements on mixing matrix:

e ~ " Symmetric and doubly stochastic
Cooperative SGD
¢ =max{|A2(W)], [Am4,(W)[} <1

Xir1 = [Xp — nGr|/ Wy Larger for sparser topology

mixing matrix Example:
W, = g 1k modT=0 = Fully connected: W=J (=0
I  otherwise
\_ ) = Ring topology: W=W. 0<(<1

* Independent workers: W =1 (=1
34



Preliminaries: Simplification of the Update Rule

Update rule: Xir1 = [ X — nGr|Wg

Multiplying one vector on both sides,

1m v 1m (9
X1 —F2 — (X — G| W —2F

m + v m —+ v
1
= [X) — nGiF2Y  Because W is stochastic
m +

1 vy 1m—|—v ]-m—|—v
Vector- dates: X =X —nG
ector-form updates bl LOTY A

35



Preliminaries: Simplification of the Update Rule

]-m v 1m (V ]-m (V
Vector-form updates: [Xk+1 s J_ X, —2F n%k +]

m—+ v m + v m —+ v
Averaged model Averaged gradient
Ug+1 m_l_ngxk, L

Update rule on average model: uj;1 = ug [m g J { Zg Xk , ](;) }

Effective learning rate

Teft
36



Preliminaries: Comparison to Fully Sync. SGD

| _ L i), ()
= Cooperative SGD  Ug+1 = Ug — Teff [ng(xk ) Sk )}

1 « ;
= Fully sync. SGD Xk+1 = X — 1] EZQ(XM@(J)

r

\

The key differences:

* local models are different! > Stochastic gradients are biased! )

37



Key Idea in the Proof

= According to the Lipschitz smooth assumption (A1), we have

L

F(upy1) = Fug) < (VE(Ug), Wprr — Ug) + 5 W — ugl|’
* Plugging in the update rule of cooperative SGD,
4 D y!
Lo\ el | LS~ 6
Fups1) — F(ug) < —neg|\ VE(ug), — > ax) )+ 511l > 9
9 1=1 ) 1=1 >
"Similarity” “*Noise”
Lower-bounded Upper-bounded

38



Key Idea in the Proof

LEMMA

When learning rate is fixed and satisfies certain constraints:

K K

E|=S |VF < 2 SNE [ X, (J — 1 }

i 2 IVF () } T S P L LR

Optimization Error Fully sync SGD Error Network Error

“Price” pay for comm. reduction
Recall that:
L . 11"
= Fully synchronization matrix: J = —
m
= XiJ = |ug,ug,...,ux] representsthe averaged model

39



Main Result: Discrepancies Among
Local Models Hurt Convergence.

When learning rate is fixed and satisfies certain constraints:

K
1 2 2[F(u1) — Finf] 77effLO-2 212 2 1+ CQ
E|—= VF < L —1
| <uk>} e A et
Optimization Error Fully sync SGD Error Network Error
"“Price” pay for comm. reduction
Recall that: ~ )

Recover Synchronous SGD:

= Sparsity of comm. Topolo
parsity pology ¢ b= 0.C=0.7—1

= Communication period T
Network error =0

\ j 40




Advantages of Cooperative SGD

Relax synchronization among local models may increase the convergence error

But it can significantly reduce the communication overhead

0.4 T T 0,4 T T
— Sync SGD == Sync SGD
—7'=1,C=1/3 _T=1,<=1/3
03r \ — er=2.(=0 |1 03 T e
{ =2,(= : 7=2,¢=0
“ T=10,C=O ‘ T=10,C=O

Training Loss
O
[\

)

—

Training Loss
=
(\®)

-
—

0 20 40 60 80 100 120 0 10 20 30 40 50
Epochs

Wall clock time / min

v

Change x-axis 43



Novel Analyses of Existing Algorithms
x- Rely on strong bounded gradient assumption.
Periodic Averaging SGD: A(7,11% /m,0)

= Additional network error is proportional to T — 1 instead of 7*

» Only for quadratic case.
= Strong assumptions.
Elastic Averaging SGD: A(7, W, 1)
= The first convergence analysis on non-convex objectives

= We show that there is a best value of elasticity parameter a which can yields

lowest error floor at convergence

44



Novel Analyses of Existing Algorithms

Elastic Averaging SGD: x " Only use periodic avg. strategy
= By non-blocking execution, it achieves nearly 3x speedup over the blocking

counterpart.

3

= =Blocking EASGD

== Non-blocking EASGD
7]
7]
S22 VGG-16, CIFAR-10
o1}
£ 8 workers
'E 1t Pytorch 1.0 + Gloo

-_—
.‘—
- o

0 5 10 15 20
Wall-clock Time / min .



Conclusions

A general framework for the design and analysis of comm-efficient SGD!

* Instead of averaging gradient, average local models

* Local models can be synchronized infrequently or in a sparse way

A unified convergence analysis for non-convex objective functions!

= Discrepancies among local models may hurt convergence

= Butthe communication efficiency is significantly improved

Thanks for attention!
46



