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(n,k) Reed-Solomon Codes: 1960

Data: d,,d,, d,, ... d,
Polynomial: d, + d, x + d, x*+ ... d} x**

Parity bits: Evaluate at n-k points:

X=1: d,+d,+d,+d,

X=2: d+2d,+4d,+8d,
X=3:

X=4:

X=n:

Can solve for the coefficients from any k coded symbols



O

O

Example: (4,2) Reed-Solomon Code

Data: d,, d, = Polynomial: d, +d, x + d,x* ... d| x**

Can solve for the coefficients from any k coded symbols
Microsoft uses (7, 4) code
Facebook uses (14,10) code



Coding vs Replication
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... 10 packets

D

... 14 encoded packets




Concept Check: Coding vs Replication

g

... 10 packets

D

... 14 encoded packets

o How many node-failures can each system tolerate?
o What is the code rate of each system?



Concept Check: Coding vs Replication

£ »

... 10 packets

D

... 14 encoded packets

o How many node-failures can each system tolerate?: 4
o Whatis the code rate of each system? 1/5and 10/14
o Replication uses 357% more storage for the same reliability!



RAID: Redundant Array of
Independent Disks (1987)

o Levels RAID o, RAID 1, ... : design for different goals such

as reliability, availability, capacity etc.
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o One of the inventors, Garth Gibson was here at CMU



RAID: Redundant Array of Independent Disks
[Patterson et al 1987]
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RAID: Redundant Array of Independent Disks
[Patterson et al 1987]

RAID 1: Replication

RAID 2: The (7,4) Hamming code Check 5 Disks
4DataDisks  Dusk (contaiing Data and Checks)
Detect 2 errors, correct 1 1805088 O208E B
| . . o0 000 # 00008
RAID 3: Only parity check disk, slg g Dq E BE s‘l’g 0080
i s2 s 08 00
used for error correction 833 H H [[]l g sig B 000
RAID 4: Bit interleaving to allow ::[] TN gu S E B g
_RAID 4 RAID 5

parallel reads/writes

RAID 5: Spread check and data

bits across all disks
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Locality and Repair Issues

o Most distributed storage systems still use replication (3x or even 21x!)

o Repairing failed nodes is hard with Reed-Solomon Codes..

N\, yd

SRR
NN

o Needto contact k other nodes

o Ifwelose1node:

o Needto download k times the lost data
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Solution: Regenerating Codes

o Codes designed to minimize:
o Repair Bandwidth
o Number of nodes contacted

A | B,
]| |C=
\ A | BitB | Az+8.7|

> |A,+A,+a,7




Exact vs Functional Repair

Exact repair
Repair the failed nodes exactly

Functional repair

New data should be equivalent to the old for repair
purposes, thatis, k out of n nodes are still enough for repair

Systematic nodes should be repaired exactly. Other notes
may be repaired functionally
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Exact vs Functional Repair

Exact
Repair

Exact Repair of
systematic nodes
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Model 1: Functional Repair

File of size M, stored on n nodes, with a bits per node

Each of the d nodes send B bits to repair it

O
o A failed node can be repaired using any d surviving nodes
O
o Repair bandwidth =y =df

[Dimakis et al 2008] studies the fundamental trade-off b/w
Storage per node: a and
Repair bandwidth: y
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[Dimakis et al 2008]:
Theorem 1: For any o > a*(n,k,d,7v), the points
(n, k,d,a,y) are feasible, and linear network codes suffice
to achieve them. It is information theoretically impossible to
achieve points with o < a*(n, k, d, ). The threshold function
a*(n, k,d,v) is the following:

M
* L kO ' Y € [f(0)7 +OO)
@k d7) = { Moatn e (1), 16— 1)), O
where
7(i) 2 2Md )

(2k—i—1)i+2k(d—k+1)
: (2d — 2k + i+ 1)i
3
g(?’) 2d Y ( )
where d < n — 1. For d,n,k given, the minimum repair
bandwidth v 1s

11>

2Md
2kd — k2 + k-

Dt.ec.reases withd, |y =Ff(k—1)=
minimum atd =n-1

4)
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Proof Idea: Information flow graph model

Cut
a

The min-cut needs to larger than M in order to recover the file
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Storage-Bandwidth Trade-off

Optimal tradeoff for k=5, n=10
0.3F T T - T T

regenerating
(MBR) codes

Minimum b/w oz} ( I Md 2 Md )

2kd — k2 + k' 2kd — k2 + k

Storage per node o

Md M)A
k inimum storage

regenerating (MS

025 028 03 032 054 035 codes
Bandwidth to repair one node y
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Storage-Bandwidth Trade-off

Optimal tradeoff for k=5, n=10
0.3F T T I T -

Minimum b/w oz}

regenerating ( M(2n —2) M(2n —2) )
(MBR) codes [ k(2n—k—1)"k(2n -k —1)

Can be achieved by RLNC
for large field size g

Storage per node o.

=~|

=

/l)
Minimum storage
regenerating (MS

0.26 0.28 03 0.32 054 036 codes
Bandwidth to repair one node y
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Concept Check: Min. Repair Bandwidth

Consider a file of size 2 Mb stored using an (7,4) code.

1. What is the repair-bandwidth of an (7,4) MDS code? How
much data is stored at each node?

2. What is the min. possible repair bandwidth, for the same
storage per node?
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Model 2: Exact Repair

Optimal tradeoff for k=5, n=10

Exact repair
feasible?

Storage per node o.

i i i I i I
0.26 0.28 03 0.32 0.34 0.36

Bandwidth to repair one node y
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Exact Repair Code Constructions

For (n,k=2) E-MSR repair can match cutset bound. [WD
ISIT'09]

(n=5,k=3) E-MSR systematic code exists [Cullina,Dimakis,
Ho, Allerton’og]

For k/n <=1/2 E-MSR repair can match cutset bound
[Rashmi, Shah, Kumar, Ramchandran (2010)]

[Cadambe, Jafar, Maleki] proposed codes to achieve the E-
MSR point for all (k,n,d).

E-MBR for all n,k, for d=n-1 matches cut-set bound [Suh,
Ramchandran (2010) ]
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Locally Repairable Codes

o Codes designed to minimize:
o Repair Bandwidth

o Number of nodes contacted [Gopalan 2012,
Papailiopoulos 2014]

A | B,
| =
A | S | Ar+B,?
T —— > |A,+A2+Bz?




Locally Repairable Codes

o (n,r,d, M, a)LRC
o Repair a failed node from r other nodes
o Trade-off between the distance d and locality r

[Papailiopoulos et al 2014]:

Theorem 1. An (n,r,d, M, a)-LRC has minimum distance d that is bounded as

sn- ][]
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Data I/O considerations
Piggybacking codes [Rashmi et al 2012, 13, 15]

| A | B, | At 50

o e s
\ [ s,

A - ,

[~ | —— [ A8 |

S —> |A,+A2+Bz?

o Datal/O from disk = 4 blocks
o Repair Bandwidth =3 blocks



Block 2

Block 3

Block 4

Piggybacking Codes

(4,2) Reed-Solomon Code Example

dl

1

— 7
a2 b2
artaz bi+b2 |
alt+2a2 bi1+2b2

d,
a,ta,

b,
b, +b,



Piggybacking Codes

(4,2) Reed-Solomon Code Example

Block 2 a2 b2

Block 3 al+a2 bl+b2

Block 4 al+2a?2 bl+2b2+al




Piggybacking Codes

(4,2) Reed-Solomon Code Example

b2

bl+b2

7~ bl+2b2+al
Block 2 a2 b2 T

Block 3 al+a2 bl+b2

Block 4 al+2a?2 \ bl+2b2+al ;




Piggybacking Codes

(4,2) Reed-Solomon Code Example

Subtract

7

bl+b2

7~ bl+2b2+al
Block 2 a2 b2 T

Block 3 al+a2 bl+b2

Block 4 al+2a?2 \ bl+2b2+al ;




Piggybacking Codes

(4,2) Reed-Solomon Code Example

b2

bl

(( +al
Block 2 a2 b2 T "‘

| |
Subtract

Block 3 al+a2 bl+b2

Block 4 al+2a?2 \ bl+2b2+al ;




Node 1

Node n

Piggybacking Codes

General Case

Node 1 | fi(a) | fi(b) |-+ | fi(2)

Node n fn(a) fn(b) fn(z)
fi(a) | fi(b) +g21(a) | fi(c) +g31(a,b) |-+ | f1(2) + ga,1(a,...,¥)
fn(a) fn(b)+g2,n(a) fl(c)—l—gg,n(a,b) o | fn(2) + gan(a,...,y)
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Storage per node o
R
=2
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Piggybacking Codes

Optimal tradeoff for k=5, n=10
T

T

Classical MDS

-————————————.

0.26

0.28

B Piggybacking codes:
Bandwidth to repair one node y . .
optimize I/O
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Concept Check: Piggybacking Codes

How many symbols need to be read to repair node 1?

An MDS Code Intermediate Step Piggybacked Code
—Nuode oT T OT T b1
Node 2 as by by as be
Node 3 as bs bs as bs
Node 4 a4 by b4 a4 by
Node 5 | 377 ja; | Yoii,bi Z?:lbi Z?:la’i Yi1bi
Node 6 | 5% Lia; | %, ib; b7 day | | i giai— i qibi | S5 ibi+ 32 da,
(@) ()
Needs 8 symbols Needs 6 symbols
to repair to repair
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Problem Formulation

o Users may want to access only one of the two chunks
o Applications: Netflix or any content hosting system
o How many requests can we simultaneously support?

1 i 1 1 ]

A

A+B

Ay Ag
reg/sec req/sec



Problem Formulation

o Users may want to access only one of the two chunks
o Applications: Netflix or any content hosting system
o How many requests can we simultaneously support?

o Whatis the set of arrival rates (A, A,) that we can support?
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Replication Vs. Coding [Anderson et al 2017]

ol LN NN Y| 1 I I S

R A
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Adding Uncoded Nodes [Anderson et al 2017]

vl

ol

d

!

a+2b

ol

v

ol

a

d

!

a+2b

A,

3u/2
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Service Capacity of Coded Storage

[Anderson et al 2017]

Service Capacity Region

Ap
a e @0 a
b b ) b
B |
Aa
Region Widths: Region Heights: Slopes:
a+b a+t2b | ¢ ¢| 2a+b
e (A—O)uif A>C,0if A<C e 0 e 0
’ e Auif A<C,CifA>C o LApifA<C, SpiftA>C .o !
Y ° %/1 ° %/1 o |
C e BuiftB<C,$puift B>C e Buif B<C,Cif B>C « 2
e 0 e (B-C)uit B>C,0if B<SC e vertical
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Service Capacity of Coded Storage

[Anderson et al 2017]

a+b

2a+b

I'Xa
K20 3u 4 S 64
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Maximizing Service Capacity: k files, n nodes

o Qa: Given a code, how to optimally split the requests?
o Q2:What is the best underlying erasure code?

dl 1 ] |

a b a+b a+2b

A, Ay
reg/sec req/sec



Other considerations

Latency
Security
Update-efficiency

Next Lecture: Coded Computing

Approx. Computing
Matrix-vector & matrix-matrix mult.
Distributed Machine Learning
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