
1

18-847F: Special Topics in
Computer Systems

Foundations of Cloud and Machine Learning
Infrastructure

2

Lecture 9: Coding for Distributed Storage

Foundations of Cloud and Machine Learning
Infrastructure

Outline

Coded Distributed Storage

Repair-efficiency

Service Capacity

3

(n,k) Reed-Solomon Codes: 1960

4

o Data: d1,d2, d3, … dk

o Polynomial: d1 + d2 x + d3 x2 + … dk xk-1

o Parity bits: Evaluate at n-k points:

x=1: d1+ d2+ d3+ d4

x=2: d1+ 2 d2 + 4 d3 + 8 d4

x=3 : ….
x=4: ….
x=n: …

o Can solve for the coefficients from any k coded symbols

Example: (4,2) Reed-Solomon Code

5

o Data: d1, d2 à Polynomial: d1 + d2 x + d3 x2 + … dk xk-1

o Can solve for the coefficients from any k coded symbols
o Microsoft uses (7, 4) code
o Facebook uses (14,10) code

d1 d2 d1+d2 d1+2d2

Coding vs Replication

…	14	encoded	packets…	5 copies

1GB

…	10	packets

1GB

Concept Check: Coding vs Replication

…	14	encoded	packets…	5 copies

1GB

o How many node-failures can each system tolerate?
o What is the code rate of each system?

…	10	packets

1GB

Concept Check: Coding vs Replication

…	14	encoded	packets…	5 copies

1GB

o How many node-failures can each system tolerate?: 4
o What is the code rate of each system? 1/5 and 10/14
o Replication uses 357% more storage for the same reliability!

…	10	packets

1GB

RAID: Redundant Array of
Independent Disks (1987)

9

o Levels RAID 0, RAID 1, … : design for different goals such

as reliability, availability, capacity etc.

o One of the inventors, Garth Gibson was here at CMU

RAID: Redundant Array of Independent Disks
[Patterson et al 1987]

10

o RAID 1: Replication

o RAID 2: The (7,4) Hamming code:

Detect 2 errors, correct 1

o RAID 3: Only parity check disk,

used for error correction

o RAID 4: Bit interleaving to allow

parallel reads/writes

o RAID 5: Spread check and data

bits across all disks

RAID: Redundant Array of Independent Disks
[Patterson et al 1987]

11

o RAID 1: Replication

o RAID 2: The (7,4) Hamming code:

Detect 2 errors, correct 1

o RAID 3: Only parity check disk,

used for error correction

o RAID 4: Bit interleaving to allow

parallel reads/writes

o RAID 5: Spread check and data

bits across all disks

RAID	4 RAID	5

Outline

Coded Distributed Storage

Repair-efficiency

Service Capacity

12

o Most distributed storage systems still use replication (3x or even 21x!)

o Repairing failed nodes is hard with Reed-Solomon Codes..

o If we lose 1 node :

o Need to contact k other nodes

o Need to download k times the lost data

A+2B

Locality and Repair Issues

13

A B A+B

Solution: Regenerating Codes

14

o Codes designed to minimize:
o Repair Bandwidth
o Number of nodes contacted

Exact vs Functional Repair

Exact repair
Repair the failed nodes exactly

Functional repair
New data should be equivalent to the old for repair
purposes, that is, k out of n nodes are still enough for repair

Exact repair of systematic nodes
Systematic nodes should be repaired exactly. Other notes
may be repaired functionally

15

Exact vs Functional Repair

16

Exact	
Repair

Exact	Repair of	
systematic	nodes

Functional	
repair

Model 1: Functional Repair

o File of size M, stored on n nodes, with ⍺ bits per node
o A failed node can be repaired using any d surviving nodes
o Each of the d nodes send β bits to repair it
o Repair bandwidth = 𝛾 = dβ

[Dimakis et al 2008] studies the fundamental trade-off b/w
Storage per node: ⍺ and
Repair bandwidth: 𝛾

17

18

[Dimakis et al 2008]:	

Decreases with d,
minimum at d = n-1

Proof Idea: Information flow graph model

19

The	min-cut	needs	to	larger	than	M	in	order	to	recover	the	file		

Storage-Bandwidth Trade-off

20

Minimum	storage	
regenerating	(MSR)	
codes	

Minimum	b/w	
regenerating	
(MBR)	codes	

✓
2Md

2kd� k2 + k
,

2Md

2kd� k2 + k

◆

✓
Md

k(d� k + 1)
,
M
k

◆

Storage-Bandwidth Trade-off

21

Minimum	storage	
regenerating	(MSR)	
codes	

Minimum	b/w	
regenerating	
(MBR)	codes	

✓
M(2n� 2)

k(2n� k � 1)
,

M(2n� 2)

k(2n� k � 1)

◆

Can	be	achieved	by	RLNC	
for	large	field	size	q

✓
M(n� 1)

k(n� k)
,
M
k

◆

Concept Check: Min. Repair Bandwidth

22

Consider a file of size 1 Mb stored using an (7,4) code.

1. What is the repair-bandwidth of an (7,4) MDS code? How
much data is stored at each node?

2. What is the min. possible repair bandwidth, for the same
storage per node?

Model 2: Exact Repair

23

E-MSR

E-MBR

Exact repair
feasible?

Exact Repair Code Constructions

o For (n,k=2) E-MSR repair can match cutset bound. [WD
ISIT’09]

o (n=5,k=3) E-MSR systematic code exists [Cullina,Dimakis,
Ho, Allerton’09]

o For k/n <=1/2 E-MSR repair can match cutset bound
[Rashmi, Shah, Kumar, Ramchandran (2010)]

o [Cadambe, Jafar, Maleki] proposed codes to achieve the E-
MSR point for all (k,n,d).

o E-MBR for all n,k, for d=n-1 matches cut-set bound [Suh,
Ramchandran (2010)]

24

Locally Repairable Codes

25

o Codes designed to minimize:
o Repair Bandwidth

o Number of nodes contacted [Gopalan 2012,
Papailiopoulos 2014]

Locally Repairable Codes

26

o (n, r, d, M, ⍺) LRC
o Repair a failed node from r other nodes
o Trade-off between the distance d and locality r

[Papailiopoulos et al 2014]:	

Data I/O considerations
Piggybacking	codes	[Rashmi	et	al	2012,	13,	15]

o Data I/O from disk = 4 blocks
o Repair Bandwidth = 3 blocks

Block		 1			

Block		 2			

Block		 3			

Block		 4			

a1

a2

a1+a2

a1+2a2

b1

b2

b1+b2

b1+2b2

a2
a1+a2

b2
b1+b2

Piggybacking Codes
(4,2) Reed-Solomon Code Example

Block			 1			

Block			 2			

Block			 3			

Block			 4			

a1

a2

a1+a2

a1+2a2

b1

b2

b1+b2

b1+2b2+a1

Piggybacking Codes
(4,2) Reed-Solomon Code Example

Block			 1			

Block			 2			

Block			 3			

Block			 4			

a1

a2

a1+a2

a1+2a2

b1

b2

b1+b2

b1+2b2+a1

b2

b1+b2

b1+2b2+a1

Piggybacking Codes
(4,2) Reed-Solomon Code Example

Block			 1			

Block			 2			

Block			 3			

Block			 4			

a1

a2

a1+a2

a1+2a2

b1

b2

b1+b2

b1+2b2+a1

b2

b1+b2

b1+2b2+a1

Subtract			

Piggybacking Codes
(4,2) Reed-Solomon Code Example

Block			 1			

Block			 2			

Block			 3			

Block			 4			

a1

a2

a1+a2

a1+2a2

b1

b2

b1+b2

b1+2b2+a1

b2

b1+b2

b1+2b2+a1

Subtract			

Piggybacking Codes
(4,2) Reed-Solomon Code Example

33

Piggybacking Codes
General Case

Piggybacking Codes

34

MSR

MBR

Classical	MDS

Piggybacking	codes:	
optimize	I/O

Concept Check: Piggybacking Codes
How many symbols need to be read to repair node 1?

35

Needs	8	symbols	
to	repair

Needs	6	symbols	
to	repair

Outline

Coded Distributed Storage

Repair-efficiency

Service Capacity

36

Problem Formulation

o Users may want to access only one of the two chunks
o Applications: Netflix or any content hosting system
o How many requests can we simultaneously support?

37

A+2BA B A+B

λA
req/sec

λB
req/sec

μ μ μ μ

o Users may want to access only one of the two chunks
o Applications: Netflix or any content hosting system
o How many requests can we simultaneously support?

o What is the set of arrival rates (λT, λs) that we can support?

Problem Formulation

38

λT λS

μ μ μ μ

Replication Vs. Coding [Anderson et al 2017]

39

a+2ba b a+ba b a b

λa λb

μ μμμμμ μ μ

λa λb

0 λa2.5μ

2μ

2.5μ

2μ

λb

Adding Uncoded Nodes [Anderson et al 2017]

40

0 λa

λb

a+b a+2b

μ μ

a+b a+2b

μ μ

a

μ

μ

μ 2μ0
λa

λb

μ

μ

3μ/2

Service Capacity Region

�a

�b

Region Widths:

• (A� C)µ if A > C, 0 if A  C

• Aµ if A < C, C if A � C

• C
2 µ

• B
2 µ if B < C,

C
2 µ if B � C

• 0

Region Heights:

• 0

• 1
2Aµ if A < C,

C
2 µ if A � C

• C
2 µ

• Bµ if B < C, C if B � C

• (B � C)µ if B > C, 0 if B  C

Slopes:

• 0

• 1
2

• �1

• �2

• vertical

2

Service Capacity of Coded Storage
[Anderson et al 2017]

41

a+2b

a

b

a

b

a+b 2a+b

b

A

B

C

Service Capacity of Coded Storage
[Anderson et al 2017]

42

a+2b

a

b

a

b

a+b 2a+b

b

A

B

C

A=4,	B=4

A=3,	
B=3,	C=2

A=0,	
B=0,	C=8

A=1,	B=1,	
C=6

Maximizing Service Capacity: k files, n nodes

o Q1: Given a code, how to optimally split the requests?
o Q2: What is the best underlying erasure code?

43

a+2ba b a+b

λa
req/sec

λb
req/sec

μ μ μ μ

Other considerations
Latency
Security

Update-efficiency

44

Next Lecture: Coded Computing

Approx. Computing
Matrix-vector & matrix-matrix mult.

Distributed Machine Learning

