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(n,k) Reed-Solomon Codes: 1960
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o Data: d1,d2, d3, … dk

o Polynomial: d1 + d2 x + d3 x2 + … dk xk-1

o Parity bits: Evaluate at n-k  points:

x=1: d1+ d2+ d3+ d4

x=2: d1+ 2 d2 + 4 d3 + 8 d4

x=3 : ….
x=4: ….
x=n: …

o Can solve for the coefficients from any k coded symbols



Example: (4,2) Reed-Solomon Code
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o Data: d1, d2 à Polynomial: d1 + d2 x + d3 x2 + … dk xk-1

o Can solve for the coefficients from any k coded symbols
o Microsoft uses (7, 4) code
o Facebook uses (14,10) code

d1 d2 d1+d2 d1+2d2



Coding vs Replication

…	14	encoded	packets…	5 copies

1GB

…	10	packets

1GB



Concept Check: Coding vs Replication

…	14	encoded	packets…	5 copies

1GB

o How many node-failures can each system tolerate?
o What is the code rate of each system?

…	10	packets

1GB



Concept Check: Coding vs Replication

…	14	encoded	packets…	5 copies

1GB

o How many node-failures can each system tolerate?: 4
o What is the code rate of each system?   1/5 and 10/14
o Replication uses 357% more storage for the same reliability!

…	10	packets

1GB



RAID: Redundant Array of 
Independent Disks (1987)
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o Levels RAID 0, RAID 1, … : design for different goals such 

as reliability, availability, capacity etc.

o One of the inventors, Garth Gibson was here at CMU



RAID: Redundant Array of Independent Disks 
[Patterson et al 1987]
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o RAID 1: Replication

o RAID 2: The (7,4) Hamming code: 

Detect 2 errors, correct 1

o RAID 3: Only parity check disk, 

used for error correction

o RAID 4: Bit interleaving to allow 

parallel reads/writes

o RAID 5: Spread check and data 

bits across all disks



RAID: Redundant Array of Independent Disks 
[Patterson et al 1987]
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o RAID 1: Replication

o RAID 2: The (7,4) Hamming code: 

Detect 2 errors, correct 1

o RAID 3: Only parity check disk, 

used for error correction

o RAID 4: Bit interleaving to allow 

parallel reads/writes

o RAID 5: Spread check and data 

bits across all disks

RAID	4 RAID	5
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o Most distributed storage systems still use replication (3x or even 21x!)

o Repairing failed nodes is hard with Reed-Solomon Codes..

o If we lose 1 node :

o Need to contact k other nodes

o Need to download k times the lost data

A+2B

Locality and Repair Issues
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A B A+B



Solution: Regenerating Codes
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o Codes designed to minimize:
o Repair Bandwidth 
o Number of nodes contacted



Exact vs Functional Repair

Exact repair
Repair the failed nodes exactly

Functional repair
New data should be equivalent to the old for repair 
purposes, that is, k out of n nodes are still enough for repair

Exact repair of systematic nodes
Systematic nodes should be repaired exactly. Other notes 
may be repaired functionally
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Exact vs Functional Repair
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Exact	
Repair

Exact	Repair of	
systematic	nodes

Functional	
repair



Model 1: Functional Repair

o File of size M, stored on n nodes, with ⍺ bits per node
o A failed node can be repaired using any d surviving nodes
o Each of the d nodes send β bits to repair it
o Repair bandwidth = 𝛾 = dβ

[Dimakis et al 2008] studies the fundamental trade-off b/w
Storage per node: ⍺ and
Repair bandwidth: 𝛾
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[Dimakis et al 2008]:	

Decreases with d, 
minimum at d = n-1



Proof Idea: Information flow graph model
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The	min-cut	needs	to	larger	than	M	in	order	to	recover	the	file		



Storage-Bandwidth Trade-off
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Minimum	storage	
regenerating	(MSR)	
codes	

Minimum	b/w	
regenerating	
(MBR)	codes	

✓
2Md

2kd� k2 + k
,

2Md

2kd� k2 + k

◆

✓
Md

k(d� k + 1)
,
M
k

◆



Storage-Bandwidth Trade-off
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Minimum	storage	
regenerating	(MSR)	
codes	

Minimum	b/w	
regenerating	
(MBR)	codes	

✓
M(2n� 2)

k(2n� k � 1)
,

M(2n� 2)

k(2n� k � 1)

◆

Can	be	achieved	by	RLNC	
for	large	field	size	q

✓
M(n� 1)

k(n� k)
,
M
k

◆



Concept Check: Min. Repair Bandwidth
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Consider a file of size 1 Mb stored using an (7,4) code. 

1. What is the repair-bandwidth of an (7,4) MDS code? How 
much data is stored at each node?

2. What is the min. possible repair bandwidth, for the same 
storage per node?



Model 2: Exact Repair
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E-MSR

E-MBR

Exact repair 
feasible?



Exact Repair Code Constructions

o For (n,k=2) E-MSR repair can match cutset bound. [WD 
ISIT’09] 

o (n=5,k=3) E-MSR systematic code exists [Cullina,Dimakis, 
Ho, Allerton’09]

o For k/n <=1/2 E-MSR repair can match cutset bound 
[Rashmi, Shah, Kumar, Ramchandran (2010)] 

o [Cadambe, Jafar, Maleki] proposed codes to achieve the E-
MSR point for all (k,n,d). 

o E-MBR for all n,k, for d=n-1 matches cut-set bound [Suh, 
Ramchandran (2010) ]
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Locally Repairable Codes
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o Codes designed to minimize:
o Repair Bandwidth 

o Number of nodes contacted [Gopalan 2012, 
Papailiopoulos 2014]



Locally Repairable Codes
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o (n, r, d, M, ⍺) LRC
o Repair a failed node from r other nodes
o Trade-off between the distance d and locality r

[Papailiopoulos et al 2014]:	



Data I/O considerations
Piggybacking	codes	[Rashmi	et	al	2012,	13,	15]

o Data I/O from disk = 4 blocks
o Repair Bandwidth = 3 blocks



Block		 1			

Block		 2			

Block		 3			

Block		 4			
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a2 

a1+a2 

a1+2a2 
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b1+b2

Piggybacking Codes
(4,2) Reed-Solomon Code Example
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Piggybacking Codes
General Case



Piggybacking Codes
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MSR

MBR

Classical	MDS

Piggybacking	codes:	
optimize	I/O



Concept Check: Piggybacking Codes
How many symbols need to be read to repair node 1?
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Needs	8	symbols	
to	repair

Needs	6	symbols	
to	repair
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Problem Formulation

o Users may want to access only one of the two chunks
o Applications: Netflix or any content hosting system
o How many requests can we simultaneously support?
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A+2BA B A+B

λA
req/sec

λB
req/sec

μ μ μ μ



o Users may want to access only one of the two chunks
o Applications: Netflix or any content hosting system
o How many requests can we simultaneously support?

o What is the set of arrival rates (λT, λs) that we can support?

Problem Formulation
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λT λS

μ μ μ μ



Replication Vs. Coding [Anderson et al 2017]
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a+2ba b a+ba b a b

λa λb

μ μμμμμ μ μ

λa λb

0 λa2.5μ

2μ

2.5μ

2μ

λb



Adding Uncoded Nodes [Anderson et al 2017]

40

0 λa

λb

a+b a+2b

μ μ

a+b a+2b

μ μ

a

μ

μ

μ 2μ0
λa

λb

μ

μ

3μ/2



Service Capacity Region

�a

�b

Region Widths:

• (A� C)µ if A > C, 0 if A  C

• Aµ if A < C, C if A � C

• C
2 µ

• B
2 µ if B < C,

C
2 µ if B � C

• 0

Region Heights:

• 0

• 1
2Aµ if A < C,

C
2 µ if A � C

• C
2 µ

• Bµ if B < C, C if B � C

• (B � C)µ if B > C, 0 if B  C

Slopes:

• 0

• 1
2

• �1

• �2

• vertical

2

Service Capacity of Coded Storage
[Anderson et al 2017]
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a+2b

a

b

a

b

a+b 2a+b

b

A

B

C



Service Capacity of Coded Storage
[Anderson et al 2017]
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a+2b

a

b

a

b

a+b 2a+b

b

A

B

C

A=4,	B=4

A=3,	
B=3,	C=2

A=0,	
B=0,	C=8

A=1,	B=1,	
C=6



Maximizing Service Capacity: k files, n nodes

o Q1: Given a code, how to optimally split the requests?
o Q2: What is the best underlying erasure code?
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a+2ba b a+b

λa
req/sec

λb
req/sec

μ μ μ μ



Other considerations
Latency
Security

Update-efficiency

44

Next Lecture: Coded Computing

Approx. Computing
Matrix-vector & matrix-matrix mult.

Distributed Machine Learning


