18-847F: Special Topics in Computer Systems

Foundations of Cloud and Machine Learning Infrastructure

Lecture 9: Coding for Distributed Storage

Foundations of Cloud and Machine Learning Infrastructure

Outline

Coded Distributed Storage

Repair-efficiency

Service Capacity

(n,k) Reed-Solomon Codes: 1960

- \circ Data: $d_1, d_2, d_3, \dots d_k$
- O Polynomial: $d_1 + d_2 x + d_3 x^2 + ... d_k x^{k-1}$
- Parity bits: Evaluate at n-k points:

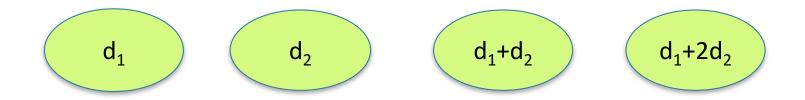
$$x=1:$$
 $d_1 + d_2 + d_3 + d_4$

$$x=2:$$
 $d_1+2d_2+4d_3+8d_4$

Can solve for the coefficients from any k coded symbols

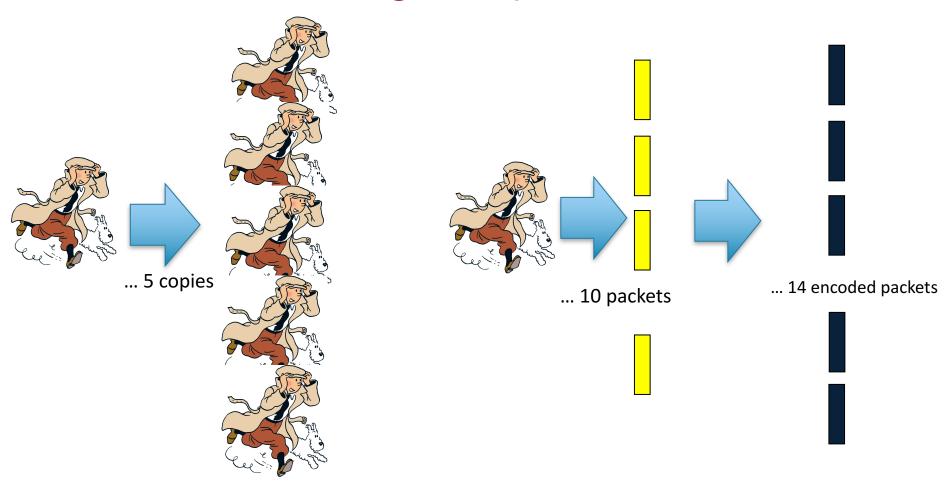
Example: (4,2) Reed-Solomon Code

O Data: d_1 , $d_2 \rightarrow Polynomial: d_1 + d_2 x + d_3 x^2 + ... d_k x^{k-1}$

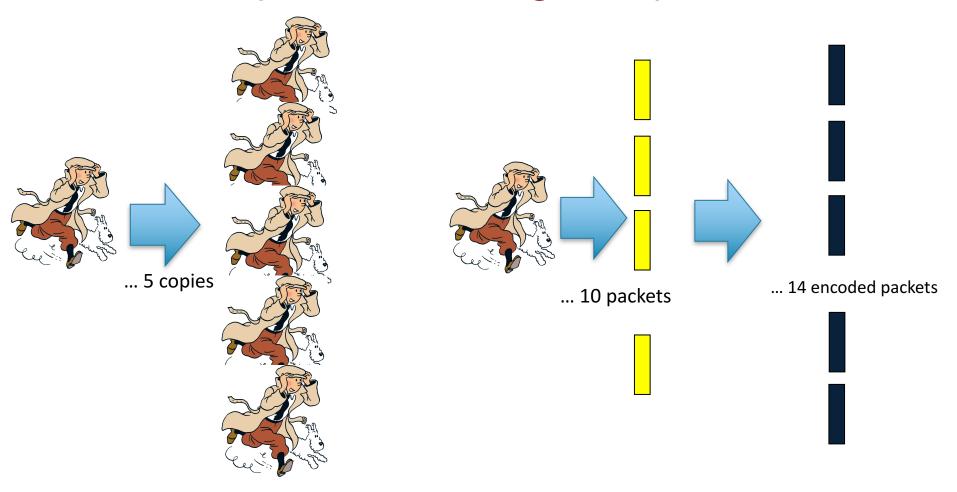


- Can solve for the coefficients from any k coded symbols
- Microsoft uses (7, 4) code
- Facebook uses (14,10) code

Coding vs Replication

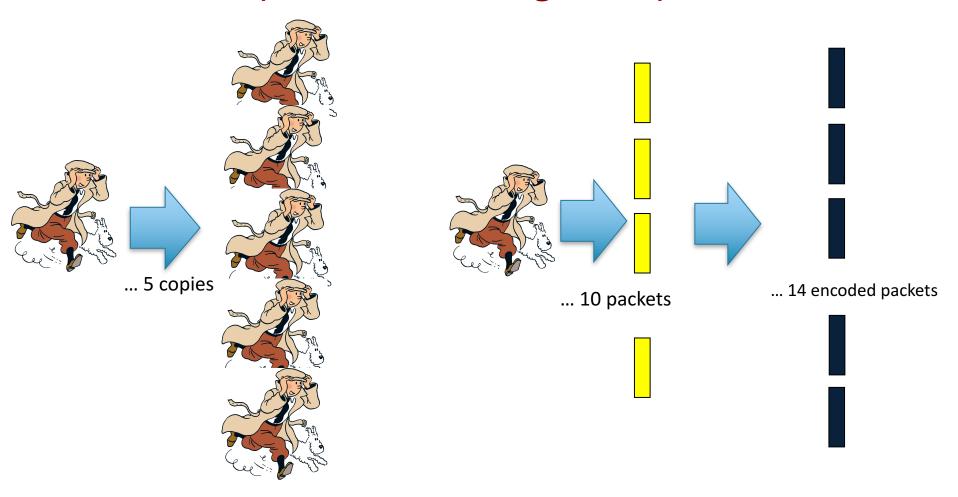


Concept Check: Coding vs Replication



- How many node-failures can each system tolerate?
- Owhat is the code rate of each system?

Concept Check: Coding vs Replication



- How many node-failures can each system tolerate?: 4
- What is the code rate of each system? 1/5 and 10/14
- Replication uses 357% more storage for the same reliability!

RAID: Redundant Array of Independent Disks (1987)

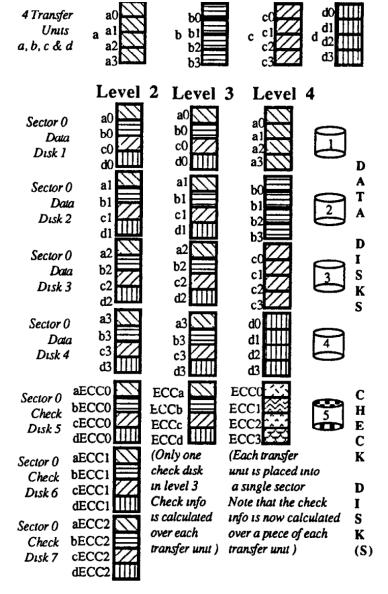
 Levels RAID o, RAID 1, ...: design for different goals such as reliability, availability, capacity etc.

One of the inventors, Garth Gibson was here at CMU

RAID: Redundant Array of Independent Disks

[Patterson et al 1987]

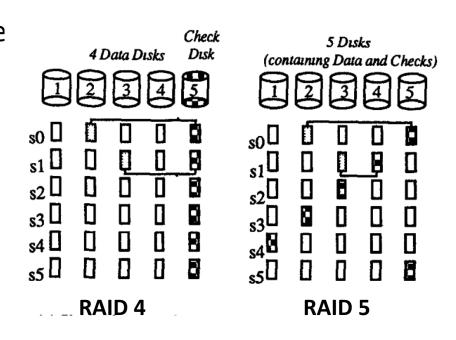
- RAID 1: Replication
- RAID 2: The (7,4) Hamming code
 Detect 2 errors, correct 1
- RAID 3: Only parity check disk, used for error correction
- RAID 4: Bit interleaving to allow parallel reads/writes
- RAID 5: Spread check and data bits across all disks



RAID: Redundant Array of Independent Disks

[Patterson et al 1987]

- RAID 1: Replication
- RAID 2: The (7,4) Hamming code
 Detect 2 errors, correct 1
- RAID 3: Only parity check disk, used for error correction
- RAID 4: Bit interleaving to allow parallel reads/writes
- RAID 5: Spread check and data bits across all disks



Outline

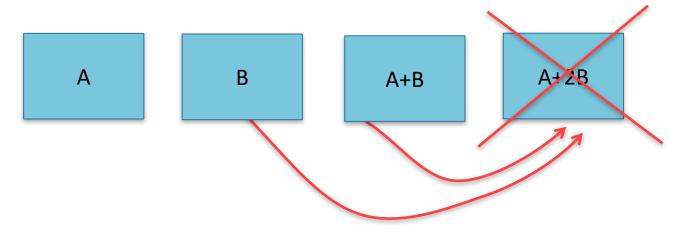
Coded Distributed Storage

Repair-efficiency

Service Capacity

Locality and Repair Issues

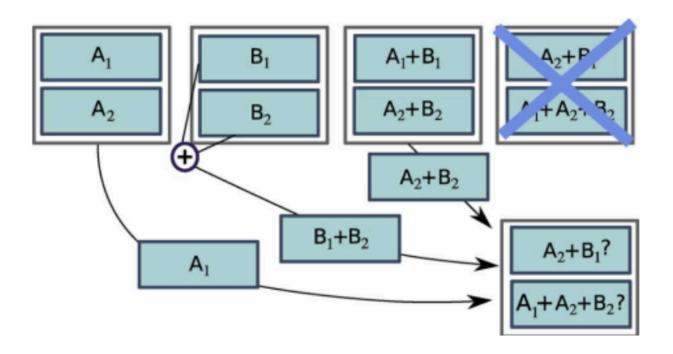
- Most distributed storage systems still use replication (3x or even 21x!)
- Repairing failed nodes is hard with Reed-Solomon Codes...



- If we lose 1 node :
 - Need to contact k other nodes
 - Need to download k times the lost data

Solution: Regenerating Codes

- Codes designed to minimize:
 - Repair Bandwidth
 - Number of nodes contacted



Exact vs Functional Repair

Exact repair

Repair the failed nodes exactly

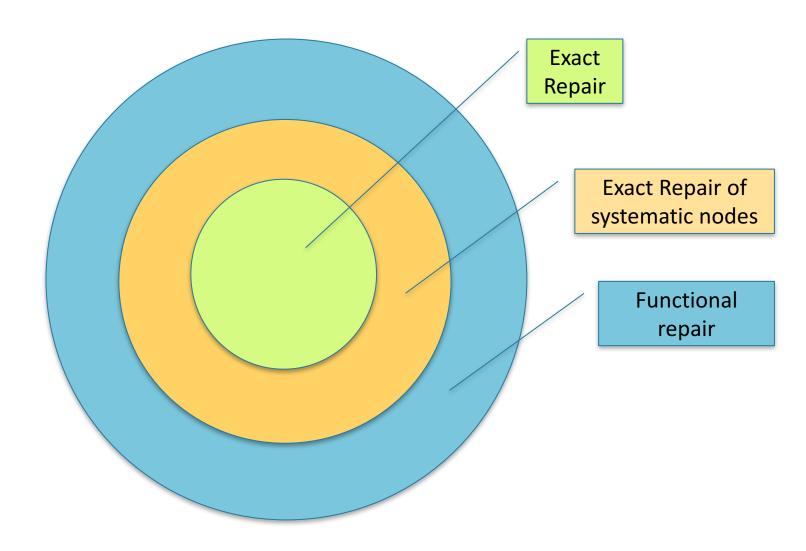
Functional repair

New data should be equivalent to the old for repair purposes, that is, k out of n nodes are still enough for repair

Exact repair of systematic nodes

Systematic nodes should be repaired exactly. Other notes may be repaired functionally

Exact vs Functional Repair



Model 1: Functional Repair

- \circ File of size M, stored on n nodes, with α bits per node
- A failed node can be repaired using any d surviving nodes
- \circ Each of the d nodes send β bits to repair it
- \circ Repair bandwidth = γ = d β

[Dimakis et al 2008] studies the fundamental trade-off b/w

Storage per node: α and

Repair bandwidth: γ

[Dimakis et al 2008]:

Theorem 1: For any $\alpha \geq \alpha^*(n,k,d,\gamma)$, the points $(n, k, d, \alpha, \gamma)$ are feasible, and linear network codes suffice to achieve them. It is information theoretically impossible to achieve points with $\alpha < \alpha^*(n, k, d, \gamma)$. The threshold function $\alpha^*(n,k,d,\gamma)$ is the following:

$$\alpha^*(n,k,d,\gamma) = \begin{cases} \frac{\mathcal{M}}{k}, & \gamma \in [f(0),+\infty)\\ \frac{\mathcal{M}-g(i)\gamma}{k-i}, & \gamma \in [f(i),f(i-1)), \end{cases}$$
(1)

where

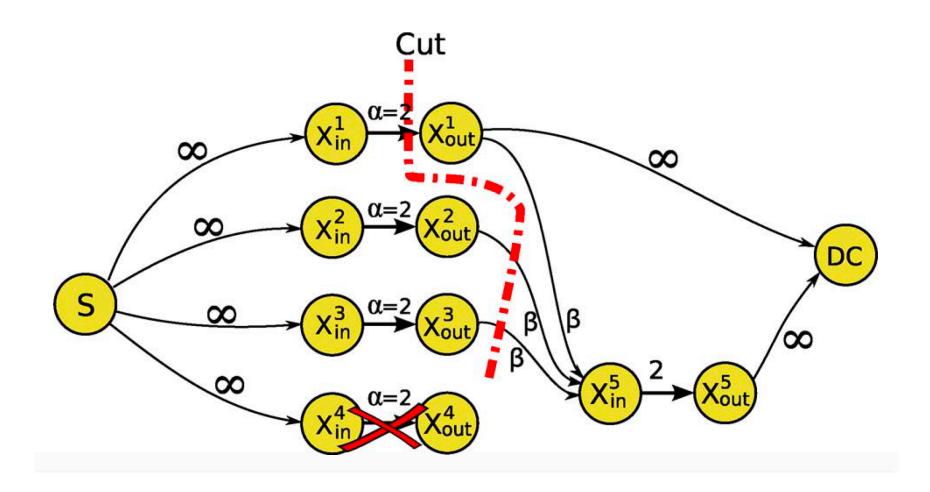
$$f(i) \stackrel{\triangle}{=} \frac{2\mathcal{M}d}{(2k-i-1)i+2k(d-k+1)},\tag{2}$$

$$g(i) \stackrel{\triangle}{=} \frac{(2d - 2k + i + 1)i}{2d},\tag{3}$$

where $d \leq n-1$. For d, n, k given, the minimum repair bandwidth γ is

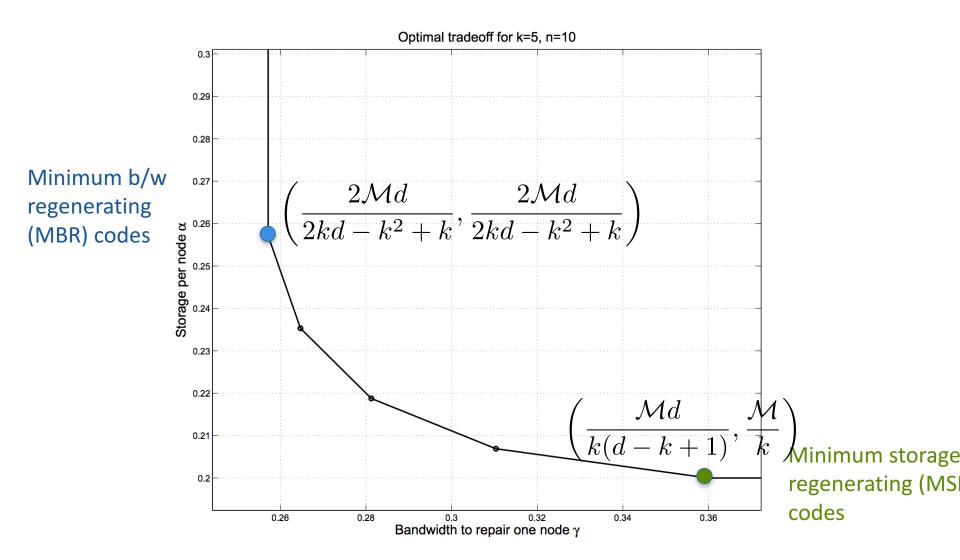
Decreases with d, minimum at d = n-1
$$\gamma_{\min} = f(k-1) = \frac{2\mathcal{M}d}{2kd-k^2+k}.$$

Proof Idea: Information flow graph model

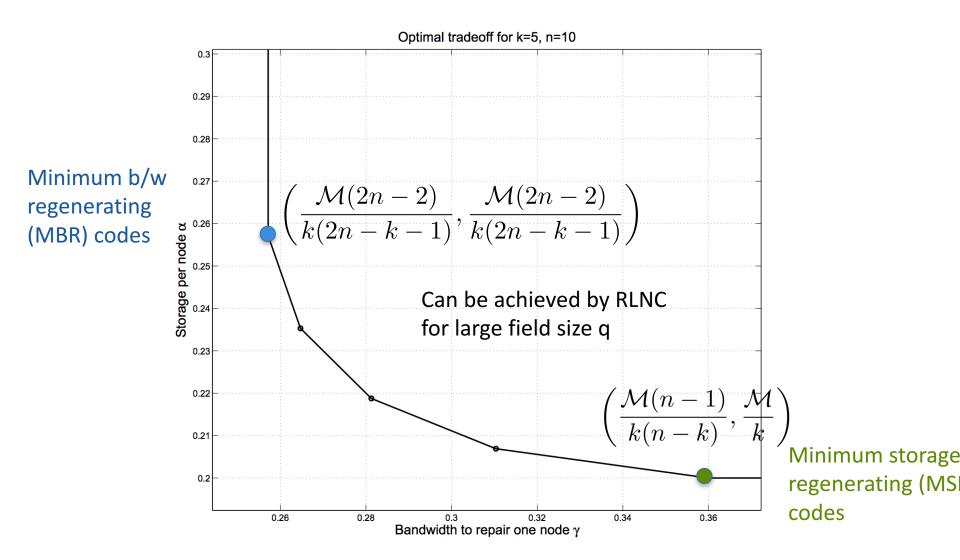


The min-cut needs to larger than M in order to recover the file

Storage-Bandwidth Trade-off



Storage-Bandwidth Trade-off

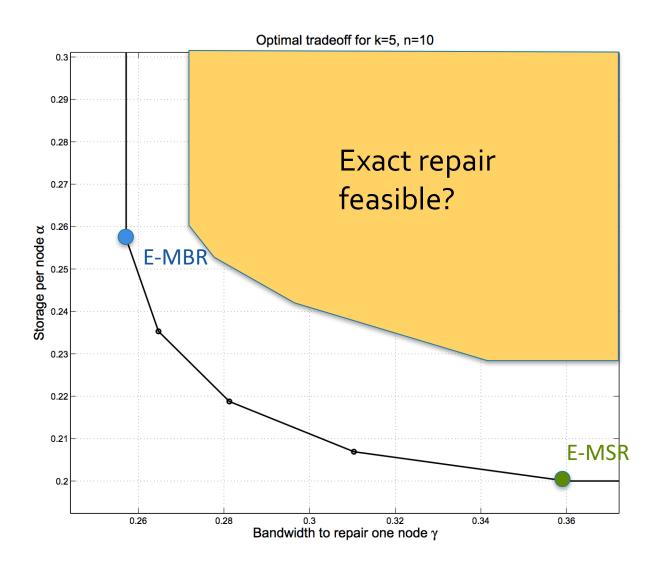


Concept Check: Min. Repair Bandwidth

Consider a file of size 1 Mb stored using an (7,4) code.

- 1. What is the repair-bandwidth of an (7,4) MDS code? How much data is stored at each node?
- 2. What is the min. possible repair bandwidth, for the same storage per node?

Model 2: Exact Repair

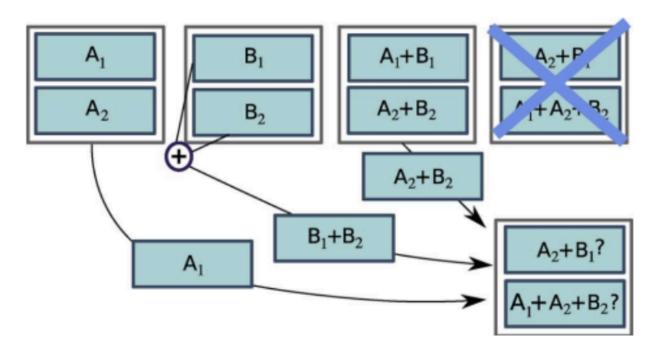


Exact Repair Code Constructions

- For (n,k=2) E-MSR repair can match cutset bound. [WD ISIT'09]
- (n=5,k=3) E-MSR systematic code exists [Cullina, Dimakis, Ho, Allerton'09]
- For k/n <=1/2 E-MSR repair can match cutset bound [Rashmi, Shah, Kumar, Ramchandran (2010)]
- [Cadambe, Jafar, Maleki] proposed codes to achieve the E-MSR point for all (k,n,d).
- E-MBR for all n,k, for d=n-1 matches cut-set bound [Suh, Ramchandran (2010)]

Locally Repairable Codes

- Codes designed to minimize:
 - Repair Bandwidth
 - Number of nodes contacted [Gopalan 2012, Papailiopoulos 2014]



Locally Repairable Codes

- \circ (n, r, d, M, α) LRC
 - Repair a failed node from r other nodes
 - Trade-off between the distance d and locality r

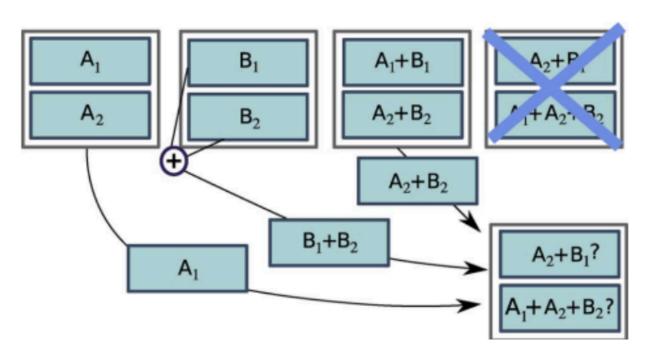
[Papailiopoulos et al 2014]:

Theorem 1. An (n, r, d, M, α) -LRC has minimum distance d that is bounded as

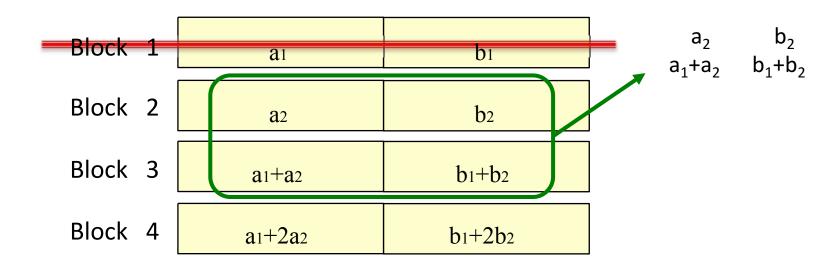
$$d \le n - \left\lceil \frac{M}{\alpha} \right\rceil - \left\lceil \frac{M}{r\alpha} \right\rceil + 2.$$

Data I/O considerations

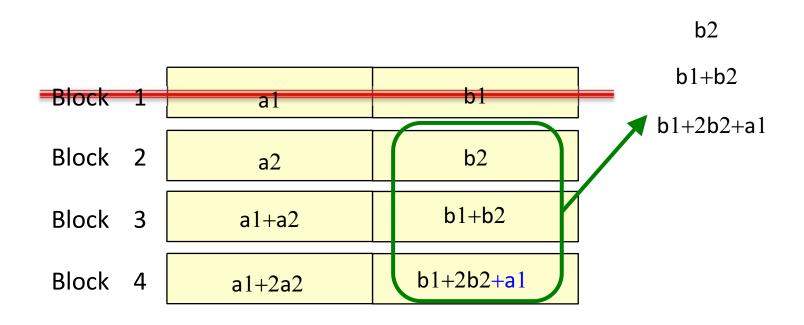
Piggybacking codes [Rashmi et al 2012, 13, 15]

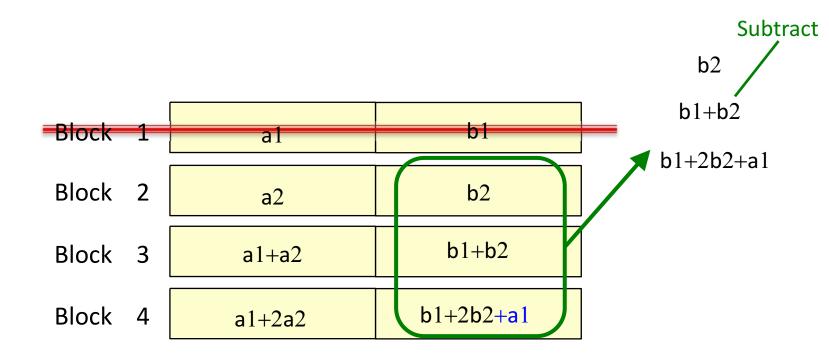


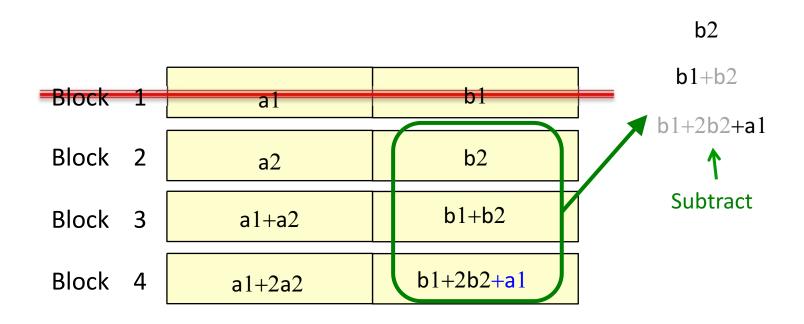
- Data I/O from disk = 4 blocks
- Repair Bandwidth = 3 blocks



Dlook	1	1	b 1	
Block		al	01	
Block	2	a2	b2	
Block	3	a1+a2	b1+b2	
Block	4	a1+2a2	b1+2b2+a1	







General Case

Node 1

:

Node n

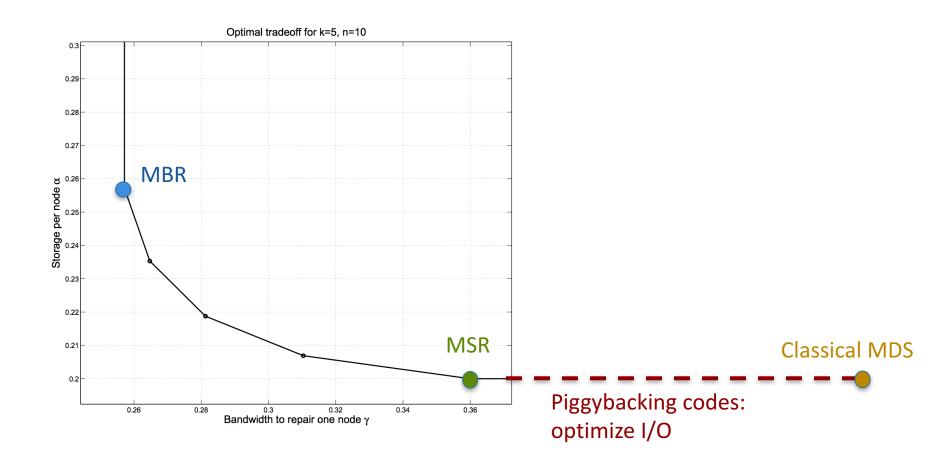
$f_1(\mathbf{a})$	$f_1(\mathbf{b})$	•••	$f_1(\mathbf{z})$
:	•••	٠	:
$f_n(\mathbf{a})$	$f_n(\mathbf{b})$		$f_n(\mathbf{z})$

Node 1

:

Node n

$f_1(\mathbf{a})$	$f_1(\mathbf{b}) + g_{2,1}(\mathbf{a})$	$f_1(\mathbf{c}) + g_{3,1}(\mathbf{a},\mathbf{b})$	•••	$f_1(\mathbf{z}) + g_{lpha,1}(\mathbf{a},,\mathbf{y})$
:	i:	:	٠	:
$f_n(\mathbf{a})$	$f_n(\mathbf{b}) + g_{2,n}(\mathbf{a})$	$f_1(\mathbf{c}) + g_{3,n}(\mathbf{a},\mathbf{b})$		$f_n(\mathbf{z}) + g_{\alpha,n}(\mathbf{a}, \dots, \mathbf{y})$



Concept Check: Piggybacking Codes How many symbols need to be read to repair node 1?

	An MDS Code		Intermediate Step		Piggybacked Code	
NT 1 1		7		7		,
Node 1	a_1	o_1	u_1	o_1	a_1	o_1
Node 2	a_2	b_2	a_2	b_2	a_2	b_2
Node 3	a_3	b_3	a_3	b_3	a_3	b_3
Node 4	a_4	b_4	a_4	b_4	a_4	b_4
Node 5	$\sum_{i=1}^4 a_i$	$\sum_{i=1}^4 b_i$	$\sum_{i=1}^4 a_i$	$\sum_{i=1}^4 b_i$	$\sum_{i=1}^4 a_i$	$\sum_{i=1}^4 b_i$
Node 6	$\sum_{i=1}^4 ia_i$	$\left[\sum_{i=1}^{4} ib_{i} \right]$	$\sum_{i=1}^4 ia_i$	$\sum_{i=1}^4 ib_i + \sum_{i=1}^2 ia_i$	$\sum_{i=3}^4 ia_i - \sum_{i=1}^4 ib_i$	$\left[\begin{array}{c}\sum_{i=1}^4 ib_i + \sum_{i=1}^2 ia_i\end{array} ight]$
	(a)			(b)	(c	e)

Needs 8 symbols to repair

Needs 6 symbols to repair

Outline

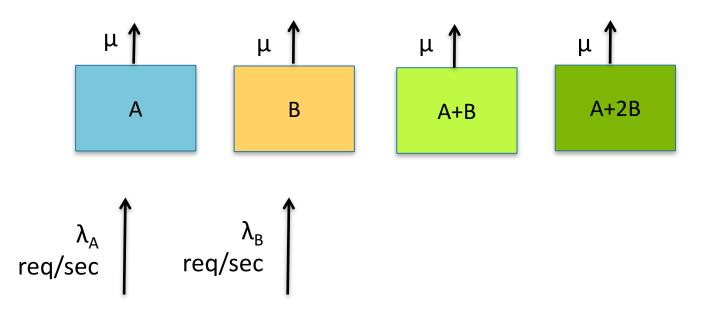
Coded Distributed Storage

Repair-efficiency

Service Capacity

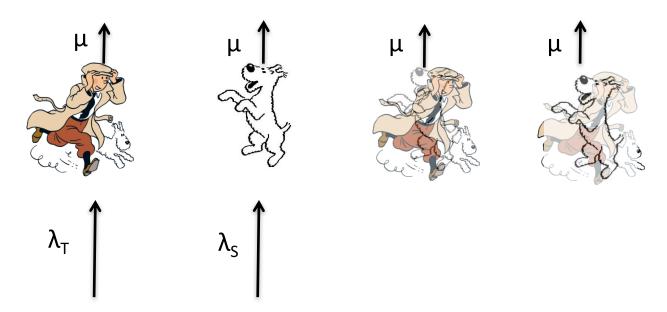
Problem Formulation

- Users may want to access only one of the two chunks
- Applications: Netflix or any content hosting system
- How many requests can we simultaneously support?



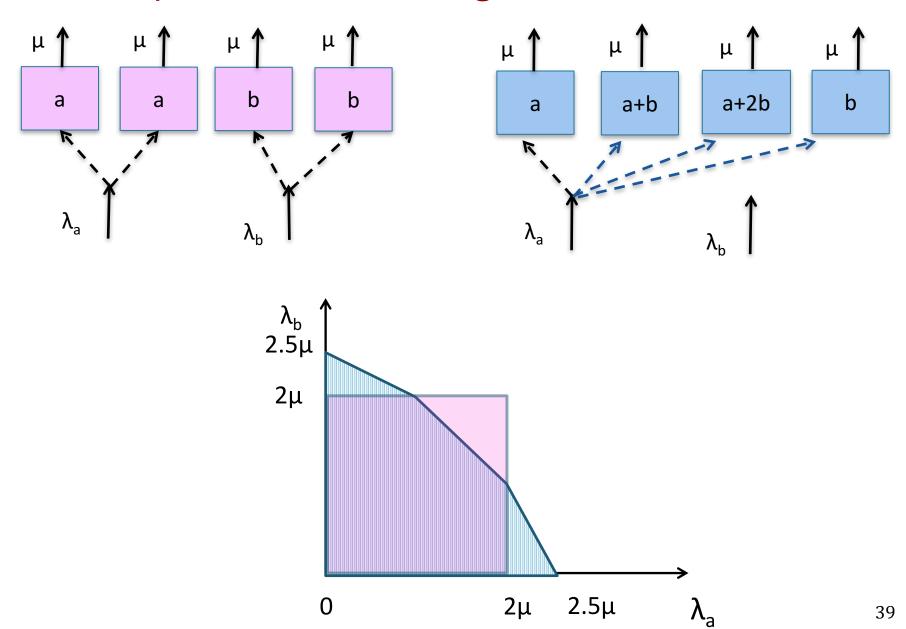
Problem Formulation

- Users may want to access only one of the two chunks
- Applications: Netflix or any content hosting system
- O How many requests can we simultaneously support?

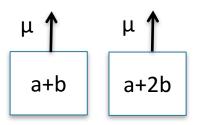


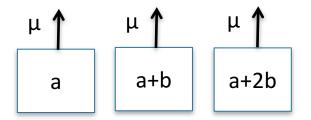
What is the set of arrival rates (λ_T , λ_s) that we can support?

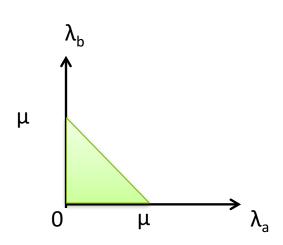
Replication Vs. Coding [Anderson et al 2017]

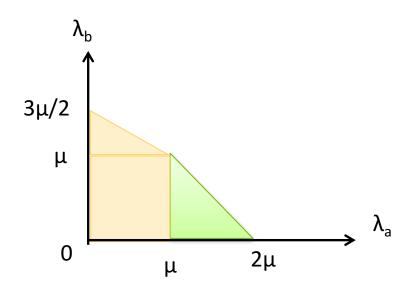


Adding Uncoded Nodes [Anderson et al 2017]





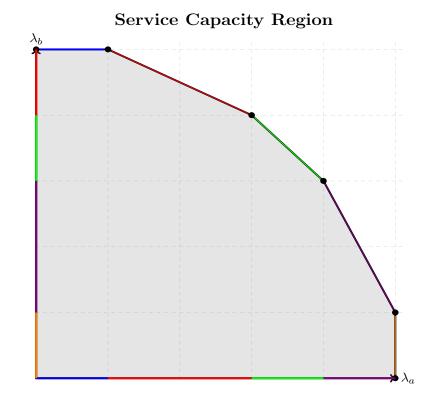


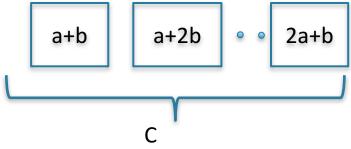


Service Capacity of Coded Storage

[Anderson et al 2017]







Region Widths:

- $(A-C)\mu$ if A>C, 0 if $A\leq C$
- $A\mu$ if A < C, C if $A \ge C$
- $\frac{C}{2}\mu$
- $\frac{B}{2}\mu$ if B < C, $\frac{C}{2}\mu$ if $B \ge C$
- 0

Region Heights:

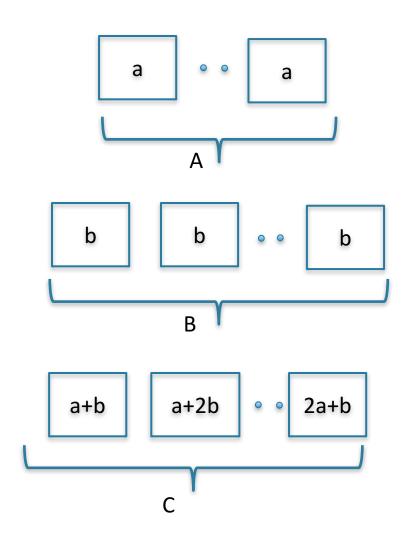
- 0
- $\frac{1}{2}A\mu$ if A < C, $\frac{C}{2}\mu$ if $A \ge C$
- $\bullet \frac{C}{2}\mu$
- $B\mu$ if B < C, C if $B \ge C$
- $(B-C)\mu$ if B>C, 0 if $B\leq C$

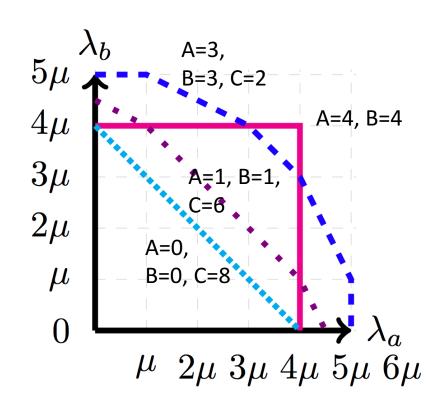
Slopes:

- .
- \bullet $\frac{1}{2}$
- −1
- \bullet -2
- vertical

Service Capacity of Coded Storage

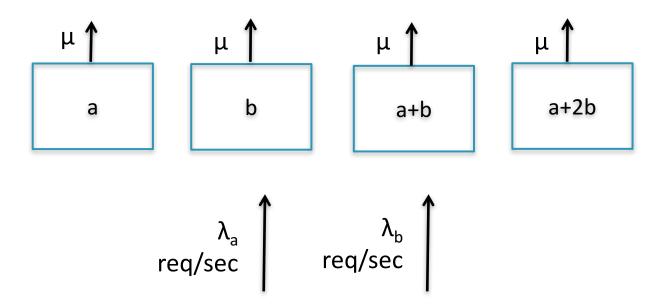
[Anderson et al 2017]





Maximizing Service Capacity: k files, n nodes

- Q1: Given a code, how to optimally split the requests?
- O2: What is the best underlying erasure code?



Other considerations

Latency
Security
Update-efficiency

Next Lecture: Coded Computing

Approx. Computing

Matrix-vector & matrix-matrix mult.

Distributed Machine Learning