
Introduction	to	Multi-Armed	Bandits
&	Bayesian	Optimization

Samarth Gupta & Ankur Mallick
18-847

Ads	everywhere!

Which	version	of	ad	to	show?

What	layout	to	use?

Political	campaign

Different	configuration	lead	to	more	donations!

Can	we	design	algorithms	with	
the	aim	of	maximizing	reward?	

Simple	approach

Simple	approach

Problems	with	this?
• How long should be the test phase?
• In test phase half the users are seeing wrong ads?
• Can you be sure of outcome in the test phase?

Should	we	still	split	equally?

Should	we	still	split	equally?

A lot of users might see sub-optimal ads!

Can	we	do	something	smart?
• Make selection adaptive, instead of having a static scheme
• Observe the results at the end of each time step and make

decisions based on that
• This motivates the study of Multi-Armed Bandit setup

Multi-Armed	Bandits

14

1$ 2$

0$

1$

0$

0$

4$

0$
2$
1$
3$

1$

2$

2$
1$
0$

Multi-Armed	Bandit	Problem

• At every round: decide which arm to play (𝑘")
• Receive a random reward corresponding to the arm played
• Mean rewards are unknown

Goal: Maximize cumulative reward in T rounds 15

Connection	with	Ad	selection

• Arms: Different version of an ad
• Choice: Which version to display to the user
• Reward: Time spent / Clicked or not?

16

Which	arm	to	pick	at	next	round?

17

1$ 2$

0$
1$

0$

1$

4$

0$
2$
0$
3$

1$

1$

2$
1$
1$

𝜇̂&(𝑡) = 0.67 𝜇̂.(𝑡) = 1.5 𝜇̂1(𝑡) = 1.2
𝑛& 𝑡 = 3 𝑛. 𝑡 = 8 𝑛1 𝑡 = 5

UCB	(Upper	Confidence	Bound)	
Algorithm

18

𝜇̂&(𝑡) = 0.67 𝜇̂.(𝑡) = 1.5 𝜇̂1(𝑡) = 1.2
𝑛& 𝑡 = 3 𝑛. 𝑡 = 8 𝑛1 𝑡 = 5

Arm 1 Arm 2 Arm 3

M
ea

n
Re

w
ar

d

𝜇̂&(𝑡)

𝜇̂.(𝑡)
𝜇̂1(𝑡)

Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1), 4-22.

UCB	(Upper	Confidence	Bound)	
Algorithm

• Selects arms with large 6𝜇7 𝑡 or small 𝑛7(𝑡)
• Confidence set shrinks as 𝑛7 𝑡 increases

19

Arm 1 Arm 2 Arm 3

M
ea

n
Re

w
ar

d

𝜇̂&(𝑡)

𝜇̂.(𝑡)
𝜇̂1(𝑡)

𝑘"8& = argmax 6𝜇7 𝑡 +
𝑎 log 𝑡
𝑛7(𝑡)

Performance	Measure

• Goal: Maximize cumulative reward
• Equivalent to minimizing “regret”
• Regret: How much loss do you incur on pulling the suboptimal

arms?

20

𝜇& 𝜇. 𝜇1

Performance	Measure:	Regret

• Ideally: Always pull arm 2
• Algorithm does not know mean reward
• Due to adaptive nature it pulls each arm different number of

times

• Loss incurred / Regret = 𝑛& 𝑡 × 𝜇. − 𝜇& + 𝑛1 𝑡 × 𝜇. − 𝜇1
= ∑7 𝑛7 𝑡 ×(𝜇∗ − 𝜇7)

21

𝜇& 𝜇. = 𝜇∗ 𝜇1
𝑛&(𝑡) 𝑛.(𝑡) 𝑛1(𝑡)

Best Arm

Regret	for	UCB

• E[𝑛7 𝑡] = 𝑂(log 𝑇) : Each sub-optimal arm pulled O(log T)
times

• E[Reg(T)] = 𝐾 − 1 𝑂(log 𝑇)

22

Arm 1 Arm 2 Arm 3

M
ea

n
Re

w
ar

d

𝜇̂&(𝑡)

𝜇̂.(𝑡)
𝜇̂1(𝑡)

𝑘"8& = argmax 6𝜇7 𝑡 +
𝑎 log 𝑡
𝑛7(𝑡)

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3), 235-256.

UCB	(Upper	Confidence	Bound)	Algorithm

How	does	this	compare	with	
the	naïve	approach?
• Let’s say, you split equally for first 20% data and then play the

best arm from there on

• Regret in this case is linear!

Alternatives	to	UCB
• Thompson Sampling

Summary:	UCB	overview
- UCB algorithm pulls sub-optimal arms much fewer times than

the naïve approach

- The sequential selection allows UCB to choose arms smartly
and reduce regret significantly!

Thompson	Sampling:	Which	arm	to	
pick	at	next	round?

• Assume rewards are coming from a gaussian distribution
• Construct posterior distribution on mean as

𝜇7~ 𝑁 6𝜇7,
&

MN " 8&
• Generate fake samples from the posterior distribution of each

arm
• Select arm with the highest value of the sample 27

𝜇̂&(𝑡) = 0.67 𝜇̂.(𝑡) = 1.5 𝜇̂1(𝑡) = 1.2
𝑛& 𝑡 = 3 𝑛. 𝑡 = 8 𝑛1 𝑡 = 5

Alternate	Objectives
• So far, we have looked at the objective of maximizing the

cumulative reward

• A common objective is Best-Arm identification
• Identify the best arm with probability 1 − 𝛿 in as few samples as

possible

• Given a budget of T pulls, identify the best arm with lowest error
probability

Hyperparameter	Optimization
• Arms: Different hyperparameters
• Objective: Find the best hyperparameter setting which leads

to lowest validation error
• Constraints: Fixed Budget

• Can use standard best-arm identification algorithms such as
Sequential Elimination, LIL-UCB etc. to solve this problem

• For instance: see HyperBand paper (presented next week)

Bayesian	Optimization

Discrete	Multi-Armed	Bandit

• At every round: decide which arm to play (𝑘")
• Receive a random reward corresponding to the arm played
• Mean rewards are unknown

Goal: Maximize cumulative reward in T rounds 31

Continuous	Multi-armed	Bandit

• At every round: decide which point to query (𝑥")
• Receive a random reward corresponding to the point queried

𝑦" = 𝑓 𝑥" + 𝜂
• True function is unknown

Goal: Find the global maximum of f(x) with minimum queries

Global
Max

https://sigopt.com/blog/uncertainty-2-bayesian-optimization-with-uncertainty/

https://sigopt.com/blog/uncertainty-2-bayesian-optimization-with-uncertainty/

Gaussian	Process	Prior
• To design an algorithm we need to

make some assumption about the
structure of the function

• Parametric assumptions (For eg. Linear,
quadratic etc.) are too restrictive

• Instead we assume that the function is
drawn from a Gaussian Distribution
over functions

• Essentially [f(x1),…,f(xN)] ~ N(0,K)

• The choice of K captures our belief
about the smoothness of the function

• For eg. 𝐾TU = exp(− &
.
| 𝑥T − 𝑥U |.

https://pythonhosted.org/infpy/gps.html

https://pythonhosted.org/infpy/gps.html

Gaussian	Process	Posterior
• A key advantage of using

Gaussian process is that
the posterior distribution
is also Gaussian

• Given t samples
[f(x1),…f(xt)], for any x*,
we have:

https://pythonhosted.org/infpy/gps.html

https://pythonhosted.org/infpy/gps.html

Recall:	UCB

• Selects arms with large 6𝜇7 𝑡 or small 𝑛7(𝑡)
• Confidence set shrinks as 𝑛7 𝑡 increases

35

Arm 1 Arm 2 Arm 3

M
ea

n
Re

w
ar

d

𝜇̂&(𝑡)

𝜇̂.(𝑡)
𝜇̂1(𝑡)

𝑘"8& = argmax 6𝜇7 𝑡 +
𝑎 log 𝑡
𝑛7(𝑡)

Bayesian	Optimization:	GP-UCB
• Assumption: f(x) is drawn

from a Gaussian Process with
kernel k

• Given: Samples [f(x1),…f(xt-1)]

• Goal: Find global maximum x*

• Algorithm:
https://pythonhosted.org/infpy/gps.html

Reference: Srinivas et. al (https://arxiv.org/abs/0912.3995)

https://pythonhosted.org/infpy/gps.html
https://arxiv.org/abs/0912.3995

Recall:	Thompson	Sampling	(TS)

• Assume rewards are coming from a gaussian distribution
• Construct posterior distribution on mean as

𝜇7~ 𝑁 6𝜇7,
&

MN " 8&
• Generate fake samples from the posterior distribution of each

arm
• Select arm with the highest value of the sample 37

𝜇̂&(𝑡) = 0.67 𝜇̂.(𝑡) = 1.5 𝜇̂1(𝑡) = 1.2
𝑛& 𝑡 = 3 𝑛. 𝑡 = 8 𝑛1 𝑡 = 5

Bayesian	Optimization:	GP-TS
• Assumption: f(x) is drawn

from a Gaussian Process with
kernel k

• Given: Samples [f(x1),…f(xt-1)]

• Goal: Find global maximum x*

• Algorithm:
𝑥" = argmaxY∈[\𝑓 𝑥

where \𝑓 𝑥 is drawn according
to the GP posterior

https://pythonhosted.org/infpy/gps.html

Reference: Ghosh et. al (https://arxiv.org/pdf/1705.06808.pdf)

https://pythonhosted.org/infpy/gps.html
https://arxiv.org/pdf/1705.06808.pdf

