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Which version of ad to show?




What layout to use?
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Different configuration lead to more donations!




Can we design algorithms with
the aim of maximizing reward?




Simple approach
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Problems with this?

* How long should be the test phase?
* In test phase half the users are seeing wrong ads?
* Can you be sure of outcome in the test phase?
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Can we do something smart?

* Make selection adaptive, instead of having a static scheme

* Observe the results at the end of each time step and make
decisions based on that
* This motivates the study of Multi-Armed Bandit setup




Multi-Armed Bandits
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Multi-Armed Bandit Problem

K arms/decisions

Unknown
mean

rewards

* At every round: decide which arm to play (k;)
* Receive a random reward corresponding to the arm played
* Mean rewards are unknown

Goal: Maximize cumulative reward in T rounds




Connection with Ad selection

_—————
iint EnFrancisco!

* Arms: Different version of an ad
* Choice: Which version to display to the user
* Reward: Time spent / Clicked or not?




Which arm to pick at next round?

15 15 25

0S 45 0S

1$ 05 25
28 1S
0S 1S
35
15
15

1, (t) = 0.67 f1,(t) = 1.5 f3(t) = 1.2

ny(t) =3 n,(t) =8 ny(t) =5




UCB (Upper Confidence Bound)
Algorithm

fi1(t) = 0.67 fo(t) = 1.5
, =3 ny(t) =8
>
2
2 f12 () )
& f13(¢)
&
g Ay (t)
>
Arm 1 Arm 2 Arm 3

Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1), 4-22.



UCB (Upper Confidence Bound)
Algorithm

.
alogt
\ ng (t)

ke = argmax i, (t) +

* Selects arms with large fi; (t) or small n (t)
* Confidence set shrinks as n; (t) increases

A

i, (t)

fis(t)

Mean Reward

4 (t)

Arm 1 Arm 2 Arm 3




Performance Measure

H1 H2

* Goal: Maximize cumulative reward
* Equivalent to minimizing “regret”

* Regret: How much loss do you incur on pulling the suboptimal
arms?




Performance Measure: Regret

Best Arm

-

H1 Ho =W
ny (t) ny(t) nz(t)

Ideally: Always pull arm 2

Algorithm does not know mean reward
Due to adaptive nature it pulls each arm different number of
times

Loss incurred / Regret = ny (£)X(uy — pq) + nz (€)X (uy — psz) [ 21 J
= 2k e ()X (1" — pg)




Regret for UCB

.
alogt
\ ng (t)

ke = argmax i, (t) +

* E[n,(t)] = 0(logT) : Each sub-optimal arm pulled O(log T)
times

* E[Reg(T)] = (K —1)0(logT)

i, (t)

fis(t)

4 (t)

Mean Reward

(2]

>

Arm 1 Arm 2 Arm 3
Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3), 235-256



UCB (Upper Confidence Bound) Algorithm




How does this compare with
the naive approach?

* Let’s say, you split equally for first 20% data and then play the
best arm from there on

SSSSSSSSSSSSSSS
A A

SSSSSSSSSSSSSSS

* Regret in this case is linear!




Alternatives to UCB

* Thompson Sampling




Summary: UCB overview

- UCB algorithm pulls sub-optimal arms much fewer times than
the naive approach

- The sequential selection allows UCB to choose arms smartly
and reduce regret significantly!




Thompson Sampling: Which arm to
pick at next round?

11 (t) = 0.67 fz(t) = 1.5 f3(t) = 1.2
n.(t) =3 n,(t) =8 ns(t) =5

Assume rewards are coming from a gaussian distribution

Construct posterior distribution on mean as
n 1
He~ N (‘uk'nk(t)+1)
Generate fake samples from the posterior distribution of each
arm

Select arm with the highest value of the sample




Alternate Objectives

* So far, we have looked at the objective of maximizing the
cumulative reward

* A common objective is Best-Arm identification

Identify the best arm with probability 1 — § in as few samples as
possible

Given a budget of T pulls, identify the best arm with lowest error
probability




Hyperparameter Optimization

* Arms: Different hyperparameters

* Objective: Find the best hyperparameter setting which leads
to lowest validation error

* Constraints: Fixed Budget

* Can use standard best-arm identification algorithms such as
Sequential Elimination, LIL-UCB etc. to solve this problem

* For instance: see HyperBand paper (presented next week)




Bayesian Optimization




Discrete Multi-Armed Bandit

K arms/decisions

Unknown
mean

rewards

* At every round: decide which arm to play (k;)
* Receive a random reward corresponding to the arm played
* Mean rewards are unknown

Goal: Maximize cumulative reward in T rounds




Continuous Multi-armed Bandit

GIObaI % . noisy observations

mmmm true function values

Max

https://sigopt.com/blog/uncertainty-2-bayesian-optimization-with-uncertainty/

* At every round: decide which point to query (x;)

* Receive a random reward corresponding to the point queried
ye = f(x) +1
* True function is unknown

Goal: Find the global maximum of f(x) with minimum queries



https://sigopt.com/blog/uncertainty-2-bayesian-optimization-with-uncertainty/

(Gaussian Process Prior

Samples from the prior

* To design an algorithm we need to
make some assumption about the
structure of the function

* Parametric assumptions (For eg. Linear,
guadratic etc. ) are too restrictive

* Instead we assume that the function is
drawn from a Gaussian Distribution
over functions 10 5 0 5 10

* Essentially [f(xq),...,f(xn)] ~ N(O,K) https://pythonhosted.org/infpy/gps.html

* The choice of K captures our belief
about the smoothness of the function

1
* Foreg. K;; = exp(—5||xi — x;||?



https://pythonhosted.org/infpy/gps.html

(Gaussian Process Posterior

Samples from the posterior

* A key advantage of using :
Gaussian process is that
the posterior distribution
is also Gaussian

* Given t samples
[f(x4),...f(x,)], for any xx,
we have:

30 5 0 5 10
X

https://pythonhosted.org/infpy/gps.html

p(F(z.)D,z.) = N (u(x.),0%(x.)),
w(z,) =k (K +0,1)7'Y,
0?(x,) = key — kL (K + 021)" 'k,



https://pythonhosted.org/infpy/gps.html

Recall: UCB

.
alogt
\ ng (t)

ke = argmax i, (t) +

* Selects arms with large fi; (t) or small n (t)
* Confidence set shrinks as n; (t) increases

A

i, (t)

fis(t)
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Bayesian Optimization: GP-UCB

Samples from the posterior

Assumption: f(x) is drawn ¢
from a Gaussian Process with 31
kernel k 2]

Given: Samples [f(x,),...f(x,)]

2t

Goal: Find global maximum x* 3

-10 -5 0 5 10
X

https://pythonhosted.org/infpy/gps.html

Algorithm:
_ 1/2
T, — argmax p, (x) + B, "o, 1(x).
xzcD

Reference: Srinivas et. al (https://arxiv.org/abs/0912.3995)



https://pythonhosted.org/infpy/gps.html
https://arxiv.org/abs/0912.3995

Recall: Thompson Sampling (TS)

11 (t) = 0.67 fz(t) = 1.5 f3(t) = 1.2
n.(t) =3 n,(t) =8 ns(t) =5

Assume rewards are coming from a gaussian distribution

Construct posterior distribution on mean as
n 1
He~ N (‘uk'nk(t)+1)
Generate fake samples from the posterior distribution of each
arm

Select arm with the highest value of the sample




Bayesian Optimization: GP-TS

* Assumption: f(x) is drawn
from a Gaussian Process with
kernel k

Samples from the posterior

* Given: Samples [f(x4),...fF(x1)]

* Goal: Find global maximum x*

* Algorithm: https://pythonhosted.org/infpy/gps.html

X¢ = argmaxyep f (x)
where f(x) is drawn according
to the GP posterior

Reference: Ghosh et. al (https://arxiv.org/pdf/1705.06808.pdf)
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https://arxiv.org/pdf/1705.06808.pdf

