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Ads	everywhere!



Which	version	of	ad	to	show?



What	layout	to	use?



Political	campaign



Different	configuration	lead	to	more	donations!



Can	we	design	algorithms	with	
the	aim	of	maximizing	reward?	



Simple	approach



Simple	approach



Problems	with	this?
• How long should be the test phase?
• In test phase half the users are seeing wrong ads?
• Can you be sure of outcome in the test phase?



Should	we	still	split	equally?



Should	we	still	split	equally?

A lot of users might see sub-optimal ads!



Can	we	do	something	smart?
• Make selection adaptive, instead of having a static scheme
• Observe the results at the end of each time step and make 

decisions based on that
• This motivates the study of Multi-Armed Bandit setup



Multi-Armed	Bandits
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Multi-Armed	Bandit	Problem

• At every round: decide which arm to play (𝑘")
• Receive a random reward corresponding to the arm played
• Mean rewards are unknown

Goal: Maximize cumulative reward in T rounds 15



Connection	with	Ad	selection

• Arms: Different version of an ad
• Choice: Which version to display to the user
• Reward: Time spent / Clicked or not?
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Which	arm	to	pick	at	next	round?
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𝜇̂&(𝑡) = 0.67 𝜇̂.(𝑡) = 1.5 𝜇̂1(𝑡) = 1.2
𝑛& 𝑡 = 3 𝑛. 𝑡 = 8 𝑛1 𝑡 = 5



UCB	(Upper	Confidence	Bound)	
Algorithm
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Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1), 4-22.



UCB	(Upper	Confidence	Bound)	
Algorithm

• Selects arms with large 6𝜇7 𝑡 or small 𝑛7(𝑡)
• Confidence set shrinks as 𝑛7 𝑡 increases
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Performance	Measure

• Goal: Maximize cumulative reward
• Equivalent to minimizing “regret”
• Regret: How much loss do you incur on pulling the suboptimal 

arms?
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𝜇& 𝜇. 𝜇1



Performance	Measure:	Regret

• Ideally: Always pull arm 2
• Algorithm does not know mean reward
• Due to adaptive nature it pulls each arm different number of 

times

• Loss incurred / Regret =  𝑛& 𝑡 × 𝜇. − 𝜇& + 𝑛1 𝑡 × 𝜇. − 𝜇1
= ∑7 𝑛7 𝑡 ×(𝜇∗ − 𝜇7)
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𝜇& 𝜇. = 𝜇∗ 𝜇1
𝑛&(𝑡) 𝑛.(𝑡) 𝑛1(𝑡)

Best Arm 



Regret	for	UCB

• E[𝑛7 𝑡 ] = 𝑂(log 𝑇) : Each sub-optimal arm pulled O(log T) 
times

• E[Reg(T)] = 𝐾 − 1 𝑂(log 𝑇)
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Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3), 235-256.



UCB	(Upper	Confidence	Bound)	Algorithm



How	does	this	compare	with	
the	naïve	approach?
• Let’s say, you split equally for first 20% data and then play the 

best arm from there on

• Regret in this case is linear! 



Alternatives	to	UCB
• Thompson Sampling



Summary:	UCB	overview
- UCB algorithm pulls sub-optimal arms much fewer times than 

the naïve approach

- The sequential selection allows UCB to choose arms smartly 
and reduce regret significantly!



Thompson	Sampling:	Which	arm	to	
pick	at	next	round?

• Assume rewards are coming from a gaussian distribution
• Construct posterior distribution on mean as

𝜇7~ 𝑁 6𝜇7,
&

MN " 8&
• Generate fake samples from the posterior distribution of each 

arm
• Select arm with the highest value of the sample  27
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Alternate	Objectives
• So far, we have looked at the objective of maximizing the 

cumulative reward

• A common objective is Best-Arm identification
• Identify the best arm with probability 1 − 𝛿 in as few samples as 

possible

• Given a budget of T pulls, identify the best arm with lowest error 
probability



Hyperparameter	Optimization
• Arms: Different hyperparameters 
• Objective: Find the best hyperparameter setting which leads 

to lowest validation error
• Constraints: Fixed Budget

• Can use standard best-arm identification algorithms such as 
Sequential Elimination, LIL-UCB etc. to solve this problem

• For instance: see HyperBand paper (presented next week)



Bayesian	Optimization



Discrete	Multi-Armed	Bandit

• At every round: decide which arm to play (𝑘")
• Receive a random reward corresponding to the arm played
• Mean rewards are unknown

Goal: Maximize cumulative reward in T rounds 31



Continuous	Multi-armed	Bandit

• At every round: decide which point to query (𝑥")
• Receive a random reward corresponding to the point queried

𝑦" = 𝑓 𝑥" + 𝜂
• True function is unknown

Goal: Find the global maximum of f(x) with minimum queries

Global
Max

https://sigopt.com/blog/uncertainty-2-bayesian-optimization-with-uncertainty/

https://sigopt.com/blog/uncertainty-2-bayesian-optimization-with-uncertainty/


Gaussian	Process	Prior
• To design an algorithm we need to 

make some assumption about the 
structure of the function

• Parametric assumptions (For eg. Linear, 
quadratic etc. ) are too restrictive

• Instead we assume that the function is 
drawn from a Gaussian Distribution 
over functions

• Essentially [f(x1),…,f(xN)] ~ N(0,K)

• The choice of K captures our belief 
about the smoothness of the function

• For eg. 𝐾TU = exp(− &
.
| 𝑥T − 𝑥U |.

https://pythonhosted.org/infpy/gps.html

https://pythonhosted.org/infpy/gps.html


Gaussian	Process	Posterior
• A key advantage of using 

Gaussian process is that 
the posterior distribution 
is also Gaussian

• Given t samples 
[f(x1),…f(xt)], for any x*, 
we have:

https://pythonhosted.org/infpy/gps.html

https://pythonhosted.org/infpy/gps.html


Recall:	UCB

• Selects arms with large 6𝜇7 𝑡 or small 𝑛7(𝑡)
• Confidence set shrinks as 𝑛7 𝑡 increases
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Bayesian	Optimization:	GP-UCB
• Assumption: f(x) is drawn 

from a Gaussian Process with 
kernel k

• Given: Samples [f(x1),…f(xt-1)]

• Goal: Find global maximum x*

• Algorithm:
https://pythonhosted.org/infpy/gps.html

Reference: Srinivas et. al (https://arxiv.org/abs/0912.3995)

https://pythonhosted.org/infpy/gps.html
https://arxiv.org/abs/0912.3995


Recall:	Thompson	Sampling	(TS)

• Assume rewards are coming from a gaussian distribution
• Construct posterior distribution on mean as

𝜇7~ 𝑁 6𝜇7,
&

MN " 8&
• Generate fake samples from the posterior distribution of each 

arm
• Select arm with the highest value of the sample  37
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Bayesian	Optimization:	GP-TS
• Assumption: f(x) is drawn 

from a Gaussian Process with 
kernel k

• Given: Samples [f(x1),…f(xt-1)]

• Goal: Find global maximum x*

• Algorithm:
𝑥" = argmaxY∈[ \𝑓 𝑥

where \𝑓 𝑥 is drawn according 
to the GP posterior

https://pythonhosted.org/infpy/gps.html

Reference: Ghosh et. al (https://arxiv.org/pdf/1705.06808.pdf)

https://pythonhosted.org/infpy/gps.html
https://arxiv.org/pdf/1705.06808.pdf

