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Vector spaces — definition

Set of elements (vectors) with two operations:

sum of elements: u + v, where u,v € V

and multiplication by a scalar: «-u, « € F (F=R,C,...).



Vector spaces — definition

Set of elements (vectors) with two operations:

sum of elements: u + v, where u,v € V

and multiplication by a scalar: «-u, « € F (F=R,C,...).
Satisfying:

Joev : x+ 0 = x,

Vxev @ 3—x : x + (—x)0,

Je € F: (x = x we denote ( =1,

Commutativity: X +y =y + X.

Associativity: (x +y)+z=x+ (y + z) and a(5x) = (af)x,
Distributivity: a(x +y) = ax + ay and (a + 8)x = ax + ax,

for all x,y,z € V and o, 8 € F.



Vector spaces

X1,X2,...,X, € V are linearly independent if

n
ZQ;X;ZO — 0417...7Oz,7:0.

i=1



Vector spaces

X1,X2,...,X, € V are linearly independent if

n
ZQ;X;ZO — 0417...,01,7:0.

i=1

The span of x1,X2,...,X%, inV is

n
L{x1,X2,...,Xp} ={x € V : 3o, aneF: Za;x; = x}.
i=1



Vector spaces

B ={xy,...,%x,} is a basis of a vector space V if

n
VxeV Jau,...,ancF : E QiXj = X,

i=1

and {xi,...,x,} are linearly independent.



Normed spaces

Let V be a real vector space. A Norm is a function, denoted by
|[<] : V— R, that satisfies:

Ix]| > 0, and ||x|| = 0 if and only if x = 0,

lox]| = lafx],

IIx +yll < ||| + lyl| (triangular inequality).



Normed spaces

Let V be a real vector space. A Norm is a function, denoted by
|[<] : V— R, that satisfies:

x| > 0, and ||x|| = 0 if and only if x = 0,
lloex|| = [ex|[Ix]],

|x +y|| < |Ix|| + [lyl| (triangular inequality).

Examples (Norms in R"):

o [Ixlli =>4 X
1
o Ixll, = (XL, 1xilP)?. p>1,

L] HXHOO = MaXji<i<n |X,'|.

1



Inner product spaces

An inner product on a real vector space V is a function
() : V x V — R satisfying:
(x,x) >0 and (x,x) =0 iff x =0,

(x+y,z) = (x,z) + (y,z) and (ax,y) = a(x,y),
<Xay> = <y,X>,

vx.,y,z(EV and Vocr.

Example

Inner product in R”

n
(x,y) = in}/i =x'y.
i=1



Inner product spaces

Remark

Any inner product in V induces a norm on V: [|x]| = y/(x,X).



Inner product spaces

Remark

Any inner product in V induces a norm on V: [|x]| = y/(x,X).

Two vectors x,y € V are orthogonal, x Ly if (x,y) = 0.



Inner product spaces

Remark

Any inner product in V induces a norm on V: [|x]| = y/(x,X).
Two vectors x,y € V are orthogonal, x Ly if (x,y) = 0.

If x Ly, then
lIx +ylI*> = lIxlI*+ lIyll>.



Inner product spaces

Remark

Any inner product in V induces a norm on V: [|x]| = y/(x,X).
Two vectors x,y € V are orthogonal, x Ly if (x,y) = 0.

If x Ly, then
Ix+ylI* = lIx[1>+ lIyll>.

16 < IXIIYII] - Vayev-



Singular value decomposition (SVD) i

Every matrix has the following decomposition

Let A € R™X" then
A=UZVT,

where U € R™*™ 'V € R"™ " are orthogonal matrices (i.e.

UUT = UTU =1) and £ € R™*" is a diagonal matrix with singular
values of A denoted by o; appearing by non-increasing order:
012022 ...20;>0r41= ... = Opin(m,n) = 0



Calculus and Optimization



Calculus and Optimization
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Consider a multivariate function f : RY — R, the gradient of f is:

Of
Ox1
of
Vf = : i=—Vi
| A= Sevie {120}
of
©r4

Vf(x) points in the direction of the steepest ascent from x.
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The Jacobian of a vector field f : R" — R™ is:

ofi ofi
Ox; U Ox,
f' = B . . . f 1 = —
oty Of
oxy e Gy
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The Hessian of a vector field f : R” — R™ is:

of of
Ox; T OXn
H -1 . . [H ] 82f
F=: o fli = 570
: : 7 Ox;0x;
@in Ofm
Ox1 " Oxp

Note that: H¢(x) = Jorr ().
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If the second order partial derivatives of f : RY — R are continuous, at
a point x, then

O*f %f
0x;0x; () = Ox;0x; (x); Vijeqs,...dp

in this case the Hessian is symmetric [Hf],-j(x) = [Hf]j;(x).
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Matrix Calculus

A lot of the computations in Optimization amounts to finding stationary
points (gradient vanishes) and optimal points (stationary plus condition
on the Hessian).

The most important rules for ML are
Vi(a'x)=a

(A+AT)x,

Vi(x ATx) =
2Ax, if A is symmetric.
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For single-variable function

(fog)(x) =f'(g(x)g'(x).
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For single-variable function

(fog)(x) =f'(g(x)g'(x).

Let f : R™ — RX and g :R" — R™, then

Jfog(x) = Jf(g(X))Jg(X)

If k=1, we have fog : R" — R and

V(fog)(x) = Jg(x) " VF(g(x)).
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e Convex set: A set X C R? is convex if

tx+(1—t)y € X, forallx,y € X, and t € [0,1].

Convex set Non - convex set

e Convex function: A function f : R — R is convex if

f(tx+(1—t)y) < tf(x)+(1—t)f(y) for all x,y € dom £, and t € [0,1].

1(x)

tf (r1) + (1 - 0 m2)

Fitay +{1— Bz}




Probability




Probability
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Sample Space: a set of all possible outcomes or realizations of some
random trial.

Example: Toss a coin twice; the sample space is
Q={HH,HT,TH, TT}.

Event: A subset of sample space

Example: the event that at least one toss is a head is

A = {HH,HT, TH}.

Probability: We assign a real number P(A) to each event A, called the
probability of A.

Probability Axioms: The probability P must satisfy three axioms:

1. P(A) > 0 for every A;
2. P(Q) =1,
3. If Ay, A, ... are disjoint, then P(U2,A;) = Y o2; P(A;) 19



Random variables

Definition: A random variable is a function that maps from the sample
space to the reals (X : Q — R), i.e., it assigns a real number X(w) to
each outcome w.

Example: X returns 1 if a coin is heads and 0 if a coin is tails. Y returns
the number of heads after 3 flips of a fair coin.

Random variables can take on many values, and we are often interested
in the distribution over the values of a random variable, e.g., P(Y = 0)

20



Distribution function

Definition: Suppose X is a random variable, x is a specific value that it
can take,

Cumulative distribution function (CDF) is the function F : R — [0, 1],
where F(x) = P(X < x).

If X is discrete = probability mass function: f(x) = P(X = x).

If X is continuous = probability density function for X if there exists a

o0

function f such that f(x) > 0 for all x, [~
a<hb,

-, f(x)dx =1 and for every

Pla<X<b)= /b f(x)dx.

If F(x) is differentiable everywhere, f(x) = F’(x).
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Example of distributions

Discrete variable Probability function Mean Variance
Uniform X ~ U[1,...,N] 1/N Nl
Binomial X ~ Bin(n, p) (O)p (1 - p)n= np
Geometric X ~ Geom(p) (1—p)~'p 1/p
Poisson X ~ Poisson(\) eij!’\x A
Continuous variable Probability density function Mean Variance
Uniform X ~ U(a, b) 1/ (b-a) (a+ b)/2
Gaussian X ~ N(u, 0?) \/2170 exp(— 525 (x — w)?) m
Gamma X ~ («, B) (x > 0) r(al)ﬁa x?"le=x/8 aff
Exponential X ~ exponen(f3) %e_%% B
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Expectation

Expected Values

e Discrete random variable X, E[g(X)] = >_, . » g(x)f(x);
e Continuous random variable X, E[g(X)] = [~ g(x)f(x)

Mean and Variance p = E[X] is the mean; var[X] = E[(X — p)?] is the

variance.

We also have var[X] = E[X?] — 2.
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Multivariate Distributions

Definition:
Fx,y(x,y) =P(X <x,Y <y),
and PF (x.y)
f — X, y(X,y
X,Y(Xay) 8x8y ’

Marginal Distribution of X (Discrete case):

) =PX=x)=) PX=x,Y=y)=> fxy(xy)

or fx(x) = [, fx,y(x,y)dy for continuous variable.
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Conditional Probability and Bayes Rule

Conditional probability of X given Y =y is

Bayes Rule:

P(X|Y) = ’W
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Independence

Independent Variables X and Y are independent if and only if:
PX=x,Y=y)=P(X=x)P(Y =y)
or fx,y(x,y) = fx(x)fy(y) for all values x and y.

IID variables: Independent and identically distributed (11D) random
variables are drawn from the same distribution and are all mutually
independent.

Linearity of Expectation: Even if Xi,..., X, are not independent,

E[Z Xi] = Z E[Xi].
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Review on Statistics




Statistics

Suppose Xi, ..., X, are random variables:

Sample Mean:

Sample Variance:

If X; are iid:

E[X] = E[X] = p,
Var(X) = o?/N,
E[5N71] =5
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Point Estimation

Definition The point estimator Oy is a function of samples Xi,..., Xy
that approximates a parameter # of the distribution of X;.

Sample Bias: The bias of an estimator is

b/'as(éN) = Eg[é/\/] -0

An estimator is unbiased estimator if Eg[fy] = 0
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Suppose we have observed N realizations of the random variable X:
X1, X2, 0 3 XN

Then,

e Sample mean X = % >, Xn is an unbiased estimator of X's mean.

e Sample variance S3_; = 725 >, (x» — X)? is an unbiased estimator
of X's variance

e Sample variance S3 = £ 3" (x, — X)? is not an unbiased estimator

of X's variance
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