
18-661 Introduction to Machine Learning

Review of Mathematics for ML

Fall 2018

ECE – Carnegie Mellon University



Outline

1. Linear Algebra

2. Calculus and Optimization

3. Probability

4. Review on Statistics

1



Linear Algebra



Linear Algebra

Calculus and Optimization

Probability

Review on Statistics

2



Vector spaces – definition

Vector Space (V ,+, ·) over a field F
Set of elements (vectors) with two operations:

• sum of elements: u + v, where u, v ∈ V

• and multiplication by a scalar: α · u, α ∈ F (F = R,C, . . .).

Satisfying:

1. ∃0∈V : x + 0 = x,

2. ∀x∈V : ∃−x : x + (−x)0,

3. ∃ζ ∈ F : ζx = x we denote ζ = 1,

4. Commutativity: x + y = y + x.

5. Associativity: (x + y) + z = x + (y + z) and α(βx) = (αβ)x,

6. Distributivity: α(x + y) = αx + αy and (α + β)x = αx + αx,

for all x, y, z ∈ V and α, β ∈ F .
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Vector spaces

Linear Independence

x1, x2, . . . , xn ∈ V are linearly independent if

n∑
i=1

αixi = 0 =⇒ α1, . . . , αn = 0.

Span

The span of x1, x2, . . . , xn inV is

L{x1, x2, . . . , xn} = {x ∈ V : ∃α1,...,αn∈F :
n∑

i=1

αixi = x}.
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Vector spaces

Basis

B = {x1, . . . , xn} is a basis of a vector space V if

∀x∈V ∃α1,...,αn∈F :
n∑

i=1

αixi = x,

and {x1, . . . , xn} are linearly independent.
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Normed spaces

Norm

Let V be a real vector space. A Norm is a function, denoted by

‖ · ‖ : V → R, that satisfies:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,

2. ‖αx‖ = |α|‖x‖,
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangular inequality).

Examples (Norms in Rn):

• ‖x‖1 =
∑n

i=1 |xi |,

• ‖x‖p =
(∑n

i=1 |xi |p
) 1

p , p ≥ 1,

• ‖x‖∞ = max1≤i≤n |xi |.
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Inner product spaces

Inner product

An inner product on a real vector space V is a function

〈·〉 : V × V → R satisfying:

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0,

2. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈αx, y〉 = α〈x, y〉,
3. 〈x, y〉 = 〈y, x〉,

∀x,y,z∈V and ∀α∈R.

Example

Inner product in Rn

〈x, y〉 =
n∑

i=1

xiyi = x>y.
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Inner product spaces

Remark

Any inner product in V induces a norm on V : ‖x‖ =
√
〈x, x〉.

Orthogonality

Two vectors x, y ∈ V are orthogonal, x ⊥ y if 〈x, y〉 = 0.

Pythagorean Theorem

If x ⊥ y, then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

Cauchy-Schwarz Inequality

‖〈x, y〉‖ ≤ ‖x‖‖y‖‖, ∀x,y∈V .
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Singular value decomposition (SVD) i

Every matrix has the following decomposition

SVD

Let A ∈ Rm×n then

A = UΣV>,

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices (i.e.

UU> = U>U = I ) and Σ ∈ Rm×n is a diagonal matrix with singular

values of A denoted by σi appearing by non-increasing order:

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σmin(m,n) = 0.
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Gradient

Gradient

Consider a multivariate function f : Rd → R, the gradient of f is:

∇f =


∂f
∂x1

...
∂f
∂xn

 [∇f ]i =
∂f

∂xi
∀i ∈ {1, 2, . . . , d}

∇f (x) points in the direction of the steepest ascent from x.
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Jacobian

Jacobian

The Jacobian of a vector field f : Rn → Rm is:

Jf =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fm
∂xn

 [Jf ]ij =
∂fi
∂xj
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Hessian

Hessian

The Hessian of a vector field f : Rn → Rm is:

Hf =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fm
∂xn

 [Hf ]ij =
∂2f

∂xi∂xj

Note that: Hf (x) = J∇f>(x).
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Hessian

Clairaut’s Theorem

If the second order partial derivatives of f : Rd → R are continuous, at

a point x, then

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x), ∀i,j∈{1,...,d},

in this case the Hessian is symmetric [Hf ]ij(x) = [Hf ]ji (x).
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Matrix Calculus

A lot of the computations in Optimization amounts to finding stationary

points (gradient vanishes) and optimal points (stationary plus condition

on the Hessian).

Differentiation rules for vectors and matrices

The most important rules for ML are

∇x(a>x) = a

∇x(x>A>x) =

{
(A + A>)x,

2Ax, if A is symmetric.
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Chain rule

For single-variable function

(f ◦ g)′(x) = f ′(g(x))g ′(x).

Chain rule for multivariate functions

Let f : Rm → Rk and g : Rn → Rm, then

Jf ◦g (x) = Jf (g(x))Jg (x).

If k = 1, we have f ◦ g : Rn → R and

∇(f ◦ g)(x) = Jg (x)>∇f (g(x)).
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Convexity

• Convex set: A set X ⊆ Rd is convex if

tx + (1− t)y ∈ X , for all x, y ∈ X , and t ∈ [0, 1].

• Convex function: A function f : Rd → R is convex if

f (tx+(1−t)y) ≤ tf (x)+(1−t)f (y) for all x, y ∈ dom f , and t ∈ [0, 1].
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Setup

Sample Space: a set of all possible outcomes or realizations of some

random trial.

Example: Toss a coin twice; the sample space is

Ω = {HH,HT ,TH,TT}.

Event: A subset of sample space

Example: the event that at least one toss is a head is

A = {HH,HT ,TH}.

Probability: We assign a real number P(A) to each event A, called the

probability of A.

Probability Axioms: The probability P must satisfy three axioms:

1. P(A) ≥ 0 for every A;

2. P(Ω) = 1;

3. If A1,A2, . . . are disjoint, then P(∪∞i=1Ai ) =
∑∞

i=1 P(Ai ) 19



Random variables

Definition: A random variable is a function that maps from the sample

space to the reals (X : Ω→ R), i.e., it assigns a real number X (ω) to

each outcome ω.

Example: X returns 1 if a coin is heads and 0 if a coin is tails. Y returns

the number of heads after 3 flips of a fair coin.

Random variables can take on many values, and we are often interested

in the distribution over the values of a random variable, e.g., P(Y = 0)
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Distribution function

Definition: Suppose X is a random variable, x is a specific value that it

can take,

Cumulative distribution function (CDF) is the function F : R → [0, 1],

where F (x) = P(X ≤ x).

If X is discrete ⇒ probability mass function: f (x) = P(X = x).

If X is continuous ⇒ probability density function for X if there exists a

function f such that f (x) ≥ 0 for all x,
∫∞
−∞ f (x)dx = 1 and for every

a ≤ b,

P(a ≤ X ≤ b) =

∫ b

a

f (x)dx .

If F (x) is differentiable everywhere, f (x) = F ′(x).
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Example of distributions

Discrete variable Probability function Mean Variance

Uniform X ∼ U[1, . . . ,N] 1/N N+1
2

Binomial X ∼ Bin(n, p)
(n
x

)
px (1− p)(n−x) np

Geometric X ∼ Geom(p) (1− p)x−1p 1/p

Poisson X ∼ Poisson(λ) e−λλx
x! λ

Continuous variable Probability density function Mean Variance

Uniform X ∼ U(a, b) 1/ (b-a) (a + b)/2

Gaussian X ∼ N(µ, σ2) 1√
2πσ

exp(− 1
2σ2 (x − µ)2) µ

Gamma X ∼ Γ(α, β) (x ≥ 0) 1
Γ(α)βa x

a−1e−x/β αβ

Exponential X ∼ exponen(β) 1
β e
− x
β β
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Expectation

Expected Values

• Discrete random variable X, E [g(X )] =
∑

x∈X g(x)f (x);

• Continuous random variable X, E [g(X )] =
∫∞
−∞ g(x)f (x)

Mean and Variance µ = E [X ] is the mean; var [X ] = E [(X − µ)2] is the

variance.

We also have var [X ] = E [X 2]− µ2.
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Multivariate Distributions

Definition:

FX ,Y (x , y) := P(X ≤ x ,Y ≤ y),

and

fX ,Y (x , y) :=
∂2FX ,Y (x , y)

∂x∂y
,

Marginal Distribution of X (Discrete case):

fX (x) = P(X = x) =
∑
y

P(X = x ,Y = y) =
∑
y

fX ,Y (x , y)

or fX (x) =
∫
y
fX ,Y (x , y)dy for continuous variable.
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Conditional Probability and Bayes Rule

Conditional probability of X given Y = y is

fX |Y (x |y) = P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

fX ,Y (x , y)

fY (y)

Bayes Rule:

P(X |Y ) =
P(Y |X )P(X )

P(Y )
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Independence

Independent Variables X and Y are independent if and only if:

P(X = x ,Y = y) = P(X = x)P(Y = y)

or fX ,Y (x , y) = fX (x)fY (y) for all values x and y .

IID variables: Independent and identically distributed (IID) random

variables are drawn from the same distribution and are all mutually

independent.

Linearity of Expectation: Even if X1, . . . ,Xn are not independent,

E [
n∑

i=1

Xi ] =
n∑

i=1

E [Xi ].
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Statistics

Suppose X1, . . . ,Xn are random variables:

Sample Mean:

X̄ =
1

N

N∑
i=1

Xi

Sample Variance:

S2
N−1 =

1

N − 1

N∑
i=1

(Xi − X̄ )2.

If Xi are iid:

E [X̄ ] = E [Xi ] = µ,

Var(X̄ ) = σ2/N,

E [S2
N−1] = σ2
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Point Estimation

Definition The point estimator θ̂N is a function of samples X1, . . . ,XN

that approximates a parameter θ of the distribution of Xi .

Sample Bias: The bias of an estimator is

bias(θ̂N) = Eθ[θ̂N ]− θ

An estimator is unbiased estimator if Eθ[θ̂N ] = θ
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Example

Suppose we have observed N realizations of the random variable X :

x1, x2, · · · , xN

Then,

• Sample mean X̄ = 1
N

∑
n xn is an unbiased estimator of X ’s mean.

• Sample variance S2
N−1 = 1

N−1

∑
n(xn − X̄ )2 is an unbiased estimator

of X ’s variance

• Sample variance S2
N = 1

N

∑
n(xn − X̄ )2 is not an unbiased estimator

of X ’s variance
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