
PYTORCH 101
Ritwick Chaudhry

Credits:  
11-785  

Soumith Chintala’s PyTorch tutorial

WHAT IS PYTORCH

PyTorch is a scientific computing package, just like Numpy. What makes it
different?

It’s optimized for leveraging the power of GPUs (Graphics Processing Unit)

Also, it’s deeply embedded in Python, which makes it extremely easy to use

THE POWER OF PYTORCH

GPU support for parallel computation

Some basic neural layers to combine in your models

Enforce a general way to code your models

And most importantly, automatic backpropagation 

TENSORS

Tensors are very similar to numpy.ndarrays, with the extra support of
performing operations on those on GPUs

Thus we have to tell PyTorch where we want to place these tensors and be
careful when performing operations

Let’s have a look at Tensors in action!

AUTOGRAD! - CONVENTIONAL PIPELINE

Initialize parameters

Repeat until convergence:

Compute Loss

Compute gradients of the Loss function w.r.t parameter

Update parameters

AUTOGRAD! - CONVENTIONAL PIPELINE

Initialize parameters

Repeat until convergence:

Compute Loss

Compute gradients of the Loss function w.r.t parameter

Update parameters

The autograd package provides automatic
differentiation for all operations on Tensors.

AUTOGRAD!

It is a define-by-run framework, which means that your backprop is defined by how
your code is run, and that every single iteration can be different.

torch.Tensor is the central class of the package. If you set its
attribute .requires_grad = True, it starts to track all operations on it. When
you finish your computation you can call .backward() and have all the gradients
computed automatically. The gradient for this tensor will be accumulated
into .grad attribute.

To stop a tensor from tracking history, you can call .detach() to detach it from the
computation history, and to prevent future computation from being tracked.

To prevent tracking history (and using memory), you can also wrap the code block
in with torch.no_grad():

TORCH.NN

A Neural Network, as we know is just a composition of operations, to yield highly
complex functions.

torch.nn provides a very easy way to implement Neural Networks by stacking
different basic layers!

It relies on torch.autograd to calculate the gradients for each of the model
parameters, and thus we don’t need to worry about implementing the
backpropogation

Let’s implement a very simple NN now!

SAVING AND LOADING MODELS

Saving

Loading

WORKING WITH DATA LOADERS

Dataset ClassDataset Class

WORKING WITH DATA LOADERS

Dataloader

for x, y in dataloader:  
 output = model(x)  
 loss = criterion(output, y)

TORCHVISION TRANSFORMS

Composing them

Augmentation

Pre-processing

CRASH COURSE INTO TENSORBOARD

CRASH COURSE INTO TENSORBOARD

SOME COMMON ERRORS!

Size mismatch. (Try checking
tensor.size())

* is element-wise product.

Ensure that the tensors are on the
same devices!

SOME COMMON ERRORS!

.view() v/s .transpose()

SOME COMMON ERRORS!

OOM error!

SOME COMMON ERRORS!

Any guesses?

SOME COMMON ERRORS!

Any guesses?

SOME COMMON ERRORS!

Anything fishy here?

SOME COMMON ERRORS!

Anything fishy here?

SOME COMMON ERRORS!

Identification as a
parameter

DEBUGGING!

Let’s post on Piazza!

DEBUGGING!

You’ll learn the most this way!

DEBUGGING - TIPS!

Use a debugger!

Tons of online resources, great pytorch documentation, and basically every
error is somewhere on stackoverflow.

Use Piazza - First check if someone else has encountered the same bug before
making a new post. We will maintain an FAQ

Come to Office Hours!

THAT’S ALL FOLKS!

