18-661 Introduction to Machine Learning

Multi-class Classification

Spring 2020

ECE — Carnegie Mellon University



1. Review of Logistic regression
2. Non-linear Decision Boundary
3. Multi-class Classification

Multi-class Naive Bayes

Multi-class Logistic Regression



Review of Logistic regression



X1 = # of times 'meet’ appears in an email

X = # of times 'lottery’ appears in an email

Define feature vector x = [1, x, x2]

Learn the decision boundary wy + wixy + waxa = 0 such that
o If w x>0 declare y = 1 (spam)
o If w'x < 0 declare y =0 (ham)

E‘g Wo+ Wy Xq +Wp X, =0

Xp. 0ccurrences of ‘lottery’

x4.0ccurrences of ‘meet’

Key Idea: map features into points in a high-dimensional space, and use
hyperplanes to separate them



Intuition: Logistic Regression

e Suppose we want to output the probability of an email being
spam/ham instead of just 0 or 1

e This gives information about the confidence in the decision

e Use a function o(w ' x) that maps w "x to a value between 0 and 1

Prob(y= 1|x)

HAM SPAM

0 wTx, Linear
comb. of features

Probability that predicted label is 1 (spam)



Intuition: Logistic Regression

e Suppose we want to output the probability of an email being
spam/ham instead of just 0 or 1

e This gives information about the confidence in the decision

e Use a function o(w ' x) that maps w "x to a value between 0 and 1

Prob(y= 1|x)

HAM SPAM

0 wTx, Linear
comb. of features

Probability that predicted label is 1 (spam)

Key Problem: Finding optimal weights w that accurately predict this
probability for a new email 3



Formal Setup: Binary Logistic Classification

e Input: x = [1,x1,x,...xp] € RP*!
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Formal Setup: Binary Logistic Classification

e Input: x = [1,x1,x,...xp] € RP*!
e Output: y € {0,1}
e Training data: D = {(x,,yn),n=1,2,..., N}

e Model:

T

ply = 1x;w) = o(w ' x)

and o[-] stands for the sigmoid function
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How to optimize w?

Probability of a single training sample (x,, y,)

o(w'x,) if yo=1

1—o(w'x,) otherwise

p()/n‘xn; W) = {



How to optimize w?

Probability of a single training sample (x,, y,)

o(w'x,) if yo=1

p()/n‘xn; W) = {

1—o(w'x,) otherwise
Compact expression, exploring that y, is either 1 or 0

p(Ynlxn; w) = U(WTXn)y"[l - U(WTXn)]liy"

Minimize the negative log-likelihood of the whole training data D,
i.e. cross-entropy error function

E(w)=— Z{y,, logo(w ' x,,) + (1 — y,)log[l — o(w ' x,)]}



Gradient Descent Update for Logistic Regression

Cross-entropy Error Function

5("’) = Z{Yn log U(WTXn) + (1 - Yn) |Og[1 - U(WTXn)]}
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Simple fact: derivatives of o(a)
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Gradient Descent Update for Logistic Regression

Cross-entropy Error Function
E(w) == {yaloga(w x,)+ (1 - y,)log[l — o(w x,)]}

Simple fact: derivatives of o(a)

d
50 =0(a)ll —o(a)]

Gradient of cross-entropy loss
9E(w) T
w zn: {o(w'x,) = yn} xn

Remark

e e, = {o(w'x,) = y,} is called error for the nth training sample.



Numerical optimization

Gradient descent for logistic regression

e Choose a proper step size n > 0

e lteratively update the parameters following the negative gradient to
minimize the error function

w1 (8 nz {U(an w(t) — y,,} Xp

e Can also perform stochastic gradient descent (with a possibly
different learning rate 7)

w(tt) o w(® {U(XZW“)) B yi‘} Xi

where J; is drawn uniformly at randomly from the training data

{172’...}



Batch gradient descent vs SGD

Learning Rate = n = 0.01 Learning Rate = n = 0.01

f=4 —
oo f=]

(\

Probability of being Spam

%

Email 1
--o- Email 2

--- Email 1
-->- Email 2

Probability of being Spam
o
(=)

041 - Email3 041 _ Email 3
0.2 -—=-- Email 4 0.2] —*- Email4
0 20 40 0 50 100 150 200
Number of Iterations Number of Iterations
Batch GD SGD
fewer iterations, more iterations,
every iteration uses all samples every iteration uses one sample



Logistic regression vs linear regression

logistic regression

linear regression

Training data

(men)vyn € {Oa 1}

(Xm}/n)vyn €R

loss function

cross-entropy

RSS

prob. interpretation

Yn|Xn, w ~ Ber(o(w'x,

)

Y| Xn, w ~ N(wTx,,02)

gradient

>on (a(xy w) — yn) X

Zn (anw - }/n) Xn

Cross-entropy loss function (logistic regression):

E(w)=— Z{y,7 log a(wa,,) + (1 —yn)log[l — o(wa,,)]}

RSS loss function (linear regression):

RSS(w) = 2 > (o -

T

n

w' x,

)2
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Non-linear Decision Boundary



dle more complex decision boundaries?

B B -
g B
s Epp =
= I y
X4
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dle more complex decision boundaries?
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e This data is not linear separable
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dle more complex decision boundaries?

B -
X' &
B _
- a @R

X4

e This data is not linear separable

e Use non-linear basis functions to add more features

11



Adding polynomial features

e New feature vector is x = [1, x1, 2, X}, X3]
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Adding polynomial features

e New feature vector is x = [1, x1, 2, X}, X3]

o Pr(y = 1|x) = o(wo + wixi + waxa + wax? + wyx3)

e If w=[-1,0,0,1,1], the boundary is =1 + x + x3 =0
o If =1+ x? + x2 > 0 declare spam
o If =14 x2 + x% < 0 declare ham

‘1+X12+X22=0

B B

12



Adding polynomial features

e What if we add many more features and define
_ 2 .2 3 3
X = [1, X1, X0, X', X3, X5 X5, - - |?
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Adding polynomial features

e What if we add many more features and define
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Adding polynomial features

e What if we add many more features and define
x = [1,x1,%,x2, X3, %3, %3,...]7
e We get a complex decision boundary

B B

N ¥
X
SPAM
¥

SPAM
E

X4

Can result in overfitting and bad generalization to new data points

13



Concept-check: Bias-Variance Trade-off

high bias high variance

14



Solution to Overfitting: Regularization

e Add regularization term to be cross entropy loss function

E(w) =~ 3 {ynlogo(w o) +(1-yi)logll—o(w  x)]1+ 2wl
n ——

regularization
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B B
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Multi-class Classification




What if there are more than 2 classes?

e Dog vs. cat. vs crocodile
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Predict multiple classes/outcomes Cy, Gy, ..., Ck:

e Weather prediction: sunny, cloudy, raining, etc

e Optical character recognition: 10 digits + 26 characters (lower and
upper cases) + special characters, etc.

K =number of classes
Methods we’ve studied for binary classification:

e Naive Bayes

e Logistic regression

Do they generalize to multi-class classification?

18



Naive Bayes is already multi-class

Formal Definition
Given a random vector X € RX and a dependent variable Y € [C], the
Naive Bayes model defines the joint distribution

P(X=x,Y =c)=P(Y =c)P(X=x]Y =¢) (1)
K
c) [ ] P(wordy| Y = c)* (2)
. k=1
= [ ] 0% (3)
k=1

where xi is the number of occurrences of the kth word, 7. is the prior
probability of class ¢ (which allows multiple classes!), and 6. is the
weight of the kth word for the cth class.

19



Learning problem

Training data

D = {(xn, ¥n) bnt = D = {({xak Hers o) Yo

Goal
Learn mc,c =1,2,--- ,C, and 04, Vc € [C], k € [K] under the

constraints:
S
C

and

D b= P(word,|Y =c) =1
k k

as well as 7, 0. > 0.

20



Our hammer: maximum likelihood estimation

Log-Likelihood of the training data

L =log P(D IogHwy (Xn]yn)
= log H (ﬂ'yn H 6;"7(>
n=1 k

= Z (Iog Ty, + Z Xnk log t9ynk>
n k

= Z log my, + ank log 0y,
n n,k

Optimize it!

(mk,0%) = arg max Z log my, + Z Xnk log 0y, «
n n,k

21



Our hammer: maximum likelihood estimation

Optimization Problem

(wf,6%) = arg max Z log my, + Z Xnk log 0y, k
n n,k

22



Our hammer: maximum likelihood estimation

Optimization Problem

(wf,6%) = arg max Z log my, + Z Xnk log 0y, k

n,k
Solution
. _ #tof times word k shows up in data points labeled as c
ck #+total trials for data points labeled as ¢
. _ #rof data points labeled as c
=
N

22
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Logistic regression for pred g multiple classes?

e The linear decision boundary that we optimized was specific to
binary classification.

Prob(y= 1[x)

HAM SPAM

0 wTx, Linear
comb. of features

y =1 for spam, y = 0 for ham
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Logistic regression for predicting multiple classes?

e The linear decision boundary that we optimized was specific to
binary classification.
e If o(w'x) > 0.5 declare y = 1 (spam)
e If o(w'x) < 0.5 declare y = 0 (ham)
e How to extend it to multi-class classification?

Prob(y= 1[x)

HAM SPAM

0 wTx, Linear
comb. of features

y =1 for spam, y = 0 for ham

Idea: Express as multiple binary classification problems

24



The One-versus-Rest or One-Versus-All Approach

e For each class Ci, change the problem into binary classification
1. Relabel training data with label Cy, into POSITIVE (or ‘1")
2. Relabel all the rest data into NEGATIVE (or ‘0")
e Repeat this multiple times: Train K binary classifiers, using logistic
regression to differentiate the two classes each time

" .
"
n
o~ ..
X o
LY
A .
A
A A
A
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The One-versus-Rest or One-Versus-All Approach

e For each class Ci, change the problem into binary classification
1. Relabel training data with label Cy, into POSITIVE (or ‘1")
2. Relabel all the rest data into NEGATIVE (or ‘0")
e Repeat this multiple times: Train K binary classifiers, using logistic
regression to differentiate the two classes each time

o
[nl =)
o
o
O
N O
x O
.. ...
® @)
(X J
O
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The One-versus-Rest or One-Versus-All Approach

e For each class Ci, change the problem into binary classification

1. Relabel training data with label Cy, into POSITIVE (or ‘1’)
2. Relabel all the rest data into NEGATIVE (or ‘0")

e Repeat this multiple times: Train K binary classifiers, using logistic
regression to differentiate the two classes each time

= w,Tx=0
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The One-versus-Rest or One-Versus-All Approach

How to combine these linear decision boundaries?

e There is ambiguity in some of the regions (the 4 triangular areas)
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The One-versus-Rest or One-Versus-All Approach

How to combine these linear decision boundaries?

e There is ambiguity in some of the regions (the 4 triangular areas)

e How do we resolve this?

Square or Circle

29



The One-versus-Rest or One-Versus-All Approach

How to combine these linear decision boundaries?
e Use the confidence estimates Pr(y = C;|x) = o(w; x),
..Pr(y = Ck|x) = o(wix)
e Declare class C; that maximizes

k* = arg max Pr(y = Ck|x) = o(w/ x)
Pr(Circle) = 0.75

o + Pr(Square) = 0.6
Pr(Triangle) = 0.2

30



The One-Versus-One Approach

e For each pair of classes Cx and Ci/, change the problem into binary
classification
1. Relabel training data with label Cy, into POSITIVE (or ‘1’)
2. Relabel training data with label G,/ into NEGATIVE (or ‘0")
3. Disregard all other data

31



The One-Versus-One Approach

e How many binary classifiers for K classes?
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The One-Versus-One Approach

e How many binary classifiers for K classes? K(K —1)/2

e How to combine their outputs?

e Given x, count the K(K — 1)/2 votes from outputs of all binary
classifiers and declare the winner as the predicted class.
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The One-Versus-One Approach

How many binary classifiers for K classes? K(K —1)/2

e How to combine their outputs?

e Given x, count the K(K — 1)/2 votes from outputs of all binary
classifiers and declare the winner as the predicted class.

Use confidence scores to resolve ties

32



Contrast these approaches

Number of Binary Classifiers to be trained

e One-Versus-All: K classifiers.
e One-Versus-One: K(K — 1)/2 classifiers — bad if K is large
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Contrast these approaches

Number of Binary Classifiers to be trained

e One-Versus-All: K classifiers.
e One-Versus-One: K(K — 1)/2 classifiers — bad if K is large

Effect of Relabeling and Splitting Training Data

e One-Versus-All: imbalance in the number of positive and negative
samples can cause bias in each trained classifier

e One-Versus-One: each classifier trained on a small subset of data
(only those labeled with those two classes would be involved), which
can result in high variance

Any other ideas?

e Hierarchical classification — we will see this in decision trees
e Multinomial Logistic Regression — directly output probabilities of y
being in each of the K classes, instead of reducing to a binary

classification problem.
33



Multinomial logistic regression

Intuition:
from the decision rule of our naive Bayes classifier

y* = argmax, p(y = Ci|x) = arg max, log p(x|y = Ci)p(y = Cx)

= arg max, log 7, + E X;j log Oi = arg max,, WZX

1
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Multinomial logistic regression

Intuition:
from the decision rule of our naive Bayes classifier

*

y

arg max, p(y = Cx|x) = arg max, log p(x|y = Ci)p(y = Ck)

= arg max, log 7, + E X;j log Oi = arg max,, WZX
i
Essentially, we are comparing
T T T
Wi X, Wy X, -, WKX

with one for each category.

34



So, can we define the following conditional model?

ply = Culx) = o[wy x].

35



So, can we define the following conditional model?

ply = Culx) = o[wy x].

This would not work because:

D by = Clx) = olwix] #1.

k

each summand can be any number (independently) between 0 and 1.
But we are close!
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So, can we define the following conditional model?

ply = Culx) = o[wy x].

This would not work because:

D by = Clx) = olwix] #1.

k

each summand can be any number (independently) between 0 and 1.
But we are close!

Learn the K linear models jointly to ensure this property holds!
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Multinomial logistic regression

e Model: For each class Cx, we have a parameter vector w) and
model the posterior probability as:
Wi X . .
p(Ck|x) = ———— < This is called softmax function
Dop el
e Decision boundary: Assign x with the label that is the maximum of
posterior:
arg max, P(Cy|x) — arg max, w, x.

36



How does the softmax function behave?

Suppose we have

w, x =100, w, x =50, W3Tx = —20.
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How does the softmax function behave?

Suppose we have

w, x =100, w, x =50, W3Tx = —20.

We would pick the winning class label 1.

Softmax translates these scores into well-formed conditional
probabilities

o100
Py =1x) = —i55 e e <1

e preserves relative ordering of scores

e maps scores to values between 0 and 1 that also sum to 1

37



Sanity check

Multinomial model reduce to binary logistic regression when K =2

-
e X 1
p(C1|X) — eW;rX T eWzTX - 1 + e—(Wl—Wz)TX
_ 1
Cldew'x

Multinomial thus generalizes the (binary) logistic regression to deal with

multiple classes.

38



Parameter estimation

Discriminative approach: maximize conditional likelihood

log P(D ZlogP ValXn)
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Parameter estimation

Discriminative approach: maximize conditional likelihood

log P(D ZlogP ValXn)

We will change y, to y, = [ym Va2 --- Yak]', a K-dimensional vector
using 1-of-K encoding.

)1 iy, =k
Yok = 0 otherwise

Ex: if y, =2, then,y,=[0100 --- 0] .
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Parameter estimation

Discriminative approach: maximize conditional likelihood
log P(D ZlogP ValXn)

We will change y, to y,, = [Vn1 Yn2 -~ ynK]T

, a K-dimensional vector
using 1-of-K encoding.

)1 iy, =k
Yok = 0 otherwise

Ex: if y, =2, then,y,=[0100 --- 0] .

K
= Z log P(ya|xn) = Z log H P(Ck|xp)"™ = Z Zy,,k log P(Ck|xn)
n n k=1

n k

39



Cross-entropy error function

Definition: negative log likelihood

E(wy,wy, ..., wg) = fZZynk log P(Cxk|xn)
n k

w,j Xn

e
= — zn: zk:)/nk |0g (Zk/ ew;xn)
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Cross-entropy error function

Definition: negative log likelihood

E(wy,wy, ..., wg) = fZZynk log P(Cxk|xn)
n k

ew,jxn
_ oo [ S~
zn: zk: e Dok i

Properties

e Convex, therefore unique global optimum

e Optimization requires numerical procedures, analogous to those used
for binary logistic regression
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You should know

e What is logistic regression and solving for w using gradient descent
on the cross entropy loss function

e Difference between Naive Bayes and Logistic Regression
e How to solve for the model parameters using gradient descent

e How to handle multiclass classification: one-versus-all,
one-versus-one, multinomial regression
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