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Review of Logistic regression



Intuition: Logistic Regression

• x1 = # of times ’meet’ appears in an email

• x2 = # of times ’lottery’ appears in an email

• Define feature vector x = [1, x1, x2]

• Learn the decision boundary w0 + w1x1 + w2x2 = 0 such that

• If w>x ≥ 0 declare y = 1 (spam)

• If w>x < 0 declare y = 0 (ham)

x1: occurrences of ‘meet’

x 2
: o

cc
ur

re
nc

es
 o

f ‘
lo

tte
ry

’

w0 + w1 x1 + w2 x2 = 0

Key Idea: map features into points in a high-dimensional space, and use

hyperplanes to separate them
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Intuition: Logistic Regression

• Suppose we want to output the probability of an email being

spam/ham instead of just 0 or 1

• This gives information about the confidence in the decision

• Use a function σ(w>x) that maps w>x to a value between 0 and 1

SPAMHAM

1

0 wTx, Linear 
comb. of features

Prob(y= 1|x)

Probability that predicted label is 1 (spam)

Key Problem: Finding optimal weights w that accurately predict this

probability for a new email
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Formal Setup: Binary Logistic Classification

• Input: x = [1, x1, x2, . . . xD ] ∈ RD+1

• Output: y ∈ {0, 1}
• Training data: D = {(xn, yn), n = 1, 2, . . . ,N}

• Model:

p(y = 1|x ; w) = σ(w>x)

and σ[·] stands for the sigmoid function

σ(a) =
1

1 + e−a
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How to optimize w?

Probability of a single training sample (xn, yn)

p(yn|xn; w) =

{
σ(w>xn) if yn = 1

1− σ(w>xn) otherwise

Compact expression, exploring that yn is either 1 or 0

p(yn|xn; w) = σ(w>xn)yn [1− σ(w>xn)]1−yn

Minimize the negative log-likelihood of the whole training data D,

i.e. cross-entropy error function

E(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

5



How to optimize w?

Probability of a single training sample (xn, yn)

p(yn|xn; w) =

{
σ(w>xn) if yn = 1

1− σ(w>xn) otherwise

Compact expression, exploring that yn is either 1 or 0

p(yn|xn; w) = σ(w>xn)yn [1− σ(w>xn)]1−yn

Minimize the negative log-likelihood of the whole training data D,

i.e. cross-entropy error function

E(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

5



Gradient Descent Update for Logistic Regression

Cross-entropy Error Function

E(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

Simple fact: derivatives of σ(a)

d

d a
σ(a) = σ(a)[1− σ(a)]

Gradient of cross-entropy loss

∂E(w)

∂w
=
∑
n

{
σ(w>xn)− yn

}
xn

Remark

• en =
{
σ(w>xn)− yn

}
is called error for the nth training sample.
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Numerical optimization

Gradient descent for logistic regression

• Choose a proper step size η > 0

• Iteratively update the parameters following the negative gradient to

minimize the error function

w (t+1) ← w (t) − η
∑
n

{
σ(x>n w (t))− yn

}
xn

• Can also perform stochastic gradient descent (with a possibly

different learning rate η)

w (t+1) ← w (t) − η
{
σ(x>it w

(t))− yit

}
x it

where it is drawn uniformly at randomly from the training data

{1, 2, · · · }
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Batch gradient descent vs SGD
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Logistic regression vs linear regression

logistic regression linear regression

Training data (xn, yn), yn ∈ {0, 1} (xn, yn), yn ∈ R

loss function cross-entropy RSS

prob. interpretation yn|xn,w ∼ Ber(σ(w>xn)) yn|xn,w ∼ N (w>xn, σ
2)

gradient
∑

n

(
σ(x>n w)− yn

)
xn

∑
n

(
x>n w − yn

)
xn

Cross-entropy loss function (logistic regression):

E(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

RSS loss function (linear regression):

RSS(w) =
1

2

∑
n

(yn −w>xn)2
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Non-linear Decision Boundary



How to handle more complex decision boundaries?

x1 

x 2
 

  

• This data is not linear separable

• Use non-linear basis functions to add more features
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Adding polynomial features

• New feature vector is x = [1, x1, x2, x
2
1 , x

2
2 ]

• Pr(y = 1|x) = σ(w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2 )

• If w = [−1, 0, 0, 1, 1], the boundary is −1 + x21 + x22 = 0

• If −1 + x2
1 + x2

2 ≥ 0 declare spam

• If −1 + x2
1 + x2

2 < 0 declare ham

x1 

 -1 + x1
2 + x2

2 = 0 

x 2
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Adding polynomial features

• What if we add many more features and define

x = [1, x1, x2, x
2
1 , x

2
2 , x

3
1 , x

3
2 , . . . ]?

• We get a complex decision boundary

x1 

x 2
 

  

Can result in overfitting and bad generalization to new data points
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Concept-check: Bias-Variance Trade-off

x1

x 2

x1 
x 2

 

  

high bias high variance
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Solution to Overfitting: Regularization

• Add regularization term to be cross entropy loss function

E(w) = −
∑
n

{yn log σ(w>xn)+(1−yn) log[1−σ(w>xn)]}+ 1

2
λ‖w‖22︸ ︷︷ ︸

regularization

• Perform gradient descent on this regularized function

• Often, we do NOT regularize the bias term w0 (you will see this in

the homework)

x1 

x 2
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Multi-class Classification



What if there are more than 2 classes?

• Dog vs. cat. vs crocodile

• Movie genres (action, horror, comedy, . . . )

• Part of speech tagging (verb, noun, adjective, . . . )

• . . .

x1 

x 2
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Setup

Predict multiple classes/outcomes C1,C2, . . . ,CK :

• Weather prediction: sunny, cloudy, raining, etc

• Optical character recognition: 10 digits + 26 characters (lower and

upper cases) + special characters, etc.

K =number of classes

Methods we’ve studied for binary classification:

• Naive Bayes

• Logistic regression

Do they generalize to multi-class classification?

18



Naive Bayes is already multi-class

Formal Definition

Given a random vector X ∈ RK and a dependent variable Y ∈ [C], the

Naive Bayes model defines the joint distribution

P(X = x,Y = c) = P(Y = c)P(X = x|Y = c) (1)

= P(Y = c)
K∏

k=1

P(wordk |Y = c)xk (2)

= πc

K∏
k=1

θxkck (3)

where xk is the number of occurrences of the kth word, πc is the prior

probability of class c (which allows multiple classes!), and θck is the

weight of the kth word for the cth class.

19



Learning problem

Training data

D = {(xn, yn)}Nn=1 → D = {({xnk}Kk=1, yn)}Nn=1

Goal

Learn πc , c = 1, 2, · · · ,C, and θck ,∀c ∈ [C], k ∈ [K] under the

constraints: ∑
c

πc = 1

and ∑
k

θck =
∑
k

P(wordk |Y = c) = 1

as well as πc , θck ≥ 0.

20



Our hammer: maximum likelihood estimation

Log-Likelihood of the training data

L = logP(D) = log
N∏

n=1

πynP(xn|yn)

= log
N∏

n=1

(
πyn
∏
k

θxnkynk

)

=
∑
n

(
log πyn +

∑
k

xnk log θynk

)
=
∑
n

log πyn +
∑
n,k

xnk log θynk

Optimize it!

(π∗c , θ
∗
ck) = arg max

∑
n

log πyn +
∑
n,k

xnk log θynk

21



Our hammer: maximum likelihood estimation

Optimization Problem

(π∗c , θ
∗
ck) = arg max

∑
n

log πyn +
∑
n,k

xnk log θynk

Solution

θ∗ck =
#of times word k shows up in data points labeled as c

#total trials for data points labeled as c

π∗c =
#of data points labeled as c

N

22
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Logistic regression for predicting multiple classes?

• The linear decision boundary that we optimized was specific to

binary classification.

• If σ(w>x) ≥ 0.5 declare y = 1 (spam)

• If σ(w>x) < 0.5 declare y = 0 (ham)

• How to extend it to multi-class classification?

SPAMHAM

1

0 wTx, Linear 
comb. of features

Prob(y= 1|x)

y = 1 for spam, y = 0 for ham

Idea: Express as multiple binary classification problems

24
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The One-versus-Rest or One-Versus-All Approach

• For each class Ck , change the problem into binary classification

1. Relabel training data with label Ck , into positive (or ‘1’)

2. Relabel all the rest data into negative (or ‘0’)

• Repeat this multiple times: Train K binary classifiers, using logistic

regression to differentiate the two classes each time

x1 

x 2
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The One-versus-Rest or One-Versus-All Approach

How to combine these linear decision boundaries?

• There is ambiguity in some of the regions (the 4 triangular areas)

x1 

x 2
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The One-versus-Rest or One-Versus-All Approach

How to combine these linear decision boundaries?

• There is ambiguity in some of the regions (the 4 triangular areas)

• How do we resolve this?

x1 

x 2
 

+ 
Square or Circle 

+ None! 
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The One-versus-Rest or One-Versus-All Approach

How to combine these linear decision boundaries?

• Use the confidence estimates Pr(y = C1|x) = σ(w>1 x),

. . . Pr(y = CK |x) = σ(w>K x)

• Declare class C∗k that maximizes

k∗ = arg max
k=1,...,K

Pr(y = Ck |x) = σ(w>k x)

x1 

x 2
 

+ Pr(Square) = 0.6 

+ 

Pr(Circle) = 0.75 

Pr(Triangle) = 0.2 
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The One-Versus-One Approach

• For each pair of classes Ck and Ck′ , change the problem into binary

classification

1. Relabel training data with label Ck , into positive (or ‘1’)

2. Relabel training data with label Ck′ into negative (or ‘0’)

3. Disregard all other data

x1 

x 2
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The One-Versus-One Approach

• How many binary classifiers for K classes?

K (K − 1)/2

• How to combine their outputs?

• Given x , count the K (K − 1)/2 votes from outputs of all binary

classifiers and declare the winner as the predicted class.

• Use confidence scores to resolve ties

x1 

x 2
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Contrast these approaches

Number of Binary Classifiers to be trained

• One-Versus-All: K classifiers.

• One-Versus-One: K (K − 1)/2 classifiers – bad if K is large

Effect of Relabeling and Splitting Training Data

• One-Versus-All: imbalance in the number of positive and negative

samples can cause bias in each trained classifier

• One-Versus-One: each classifier trained on a small subset of data

(only those labeled with those two classes would be involved), which

can result in high variance

Any other ideas?

• Hierarchical classification – we will see this in decision trees

• Multinomial Logistic Regression – directly output probabilities of y

being in each of the K classes, instead of reducing to a binary

classification problem.
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Multinomial logistic regression

Intuition:

from the decision rule of our naive Bayes classifier

y∗ = arg maxk p(y = Ck |x) = arg maxk log p(x |y = Ck)p(y = Ck)

= arg maxk log πk +
∑
i

xi log θki = arg maxk w>k x

Essentially, we are comparing

w>1 x ,w>2 x , · · · ,w>K x

with one for each category.
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First try

So, can we define the following conditional model?

p(y = Ck |x) = σ[w>k x ].

This would not work because:∑
k

p(y = Ck |x) =
∑
k

σ[w>k x ] 6= 1.

each summand can be any number (independently) between 0 and 1.

But we are close!

Learn the K linear models jointly to ensure this property holds!
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Multinomial logistic regression

• Model: For each class Ck , we have a parameter vector w k and

model the posterior probability as:

p(Ck |x) =
ew>

k x∑
k′ e

w>
k′x

← This is called softmax function

• Decision boundary: Assign x with the label that is the maximum of

posterior:

arg maxk P(Ck |x)→ arg maxk w>k x .
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How does the softmax function behave?

Suppose we have

w>1 x = 100, w>2 x = 50, w>3 x = −20.

We would pick the winning class label 1.

Softmax translates these scores into well-formed conditional

probabilities

p(y = 1|x) =
e100

e100 + e50 + e−20
< 1

• preserves relative ordering of scores

• maps scores to values between 0 and 1 that also sum to 1
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Sanity check

Multinomial model reduce to binary logistic regression when K = 2

p(C1|x) =
ew>

1 x

ew>
1 x + ew>

2 x
=

1

1 + e−(w1−w2)>x

=
1

1 + e−w>x

Multinomial thus generalizes the (binary) logistic regression to deal with

multiple classes.
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Parameter estimation

Discriminative approach: maximize conditional likelihood

logP(D) =
∑
n

logP(yn|xn)

We will change yn to yn = [yn1 yn2 · · · ynK ]>, a K -dimensional vector

using 1-of-K encoding.

ynk =

{
1 if yn = k

0 otherwise

Ex: if yn = 2, then, yn = [0 1 0 0 · · · 0]>.

⇒
∑
n

logP(yn|xn) =
∑
n

log
K∏

k=1

P(Ck |xn)ynk =
∑
n

∑
k

ynk logP(Ck |xn)
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Cross-entropy error function

Definition: negative log likelihood

E(w 1,w 2, . . . ,wK ) = −
∑
n

∑
k

ynk logP(Ck |xn)

= −
∑
n

∑
k

ynk log

(
ew>

k xn∑
k′ e

w>
k′xn

)

Properties

• Convex, therefore unique global optimum

• Optimization requires numerical procedures, analogous to those used

for binary logistic regression
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Summary

You should know

• What is logistic regression and solving for w using gradient descent

on the cross entropy loss function

• Difference between Naive Bayes and Logistic Regression

• How to solve for the model parameters using gradient descent

• How to handle multiclass classification: one-versus-all,

one-versus-one, multinomial regression
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