18-661 Introduction to Machine Learning

Neural Networks-I

Spring 2019

Prof. Gauri Joshi
Announcements

- **Mid-semester grades are available on S3.**
 - These grades are based on the score in the mid-term and first 3 HWs.
 - This weights the homework much more than your final grade will.
 - There is still plenty of time to improve!
 - Come talk to us if you are concerned about your grade.

- Homework 5 due date extended to Saturday by 11:59 pm.

- Homework 6 will be released later this week.

- Homework 7 will be a mini-project in TensorFlow/Pytorch. More details coming soon!

- My office hours today are canceled.

- There will be recitation this Friday.
1. Review of Ensemble Methods

2. Review of Boosting Methods: AdaBoost

3. Neural networks: Motivation

4. The Perceptron Algorithm

5. General Neural Network Architectures
Review of Ensemble Methods
Ensemble Methods

• Instead of learning a single (weak) classifier, learn many weak classifiers, preferably those that are good at different parts of the input spaces

• **Predicted Class:** (Weighted) Average or Majority of output of the classifiers

• Strength in Diversity!

\[
H: X \rightarrow Y \ (-1, 1) \\
H(X) = h_1(X) + h_2(X) \\
H(X) = \text{sign}(\sum_{t}^{\alpha_t h_t(X)})
\]
Next, we will learn the following ensemble methods:

- Bagging or Bootstrap Aggregation
- Random Forests
- AdaBoost

\[
H: X \rightarrow Y \{-1, 1\} \\
H(X) = h_1(X) + h_2(X) \\
H(X) = \text{sign}(\sum_{t} \alpha_t h_t(X))
\]
Bagging or Bootstrap Aggregating

To avoid overfitting a decision tree to a given dataset we can average an ensemble of trees learnt on random subsets of the training data.

Bagging Trees (Training Phase):

- For $b = 1, 3, \ldots, B$
 - Choose n training samples (x_i, y_i) from D uniformly at random
 - Learn a decision tree h_b on these n samples
- Store the B decision trees $h_1, h_2, \ldots h_B$
- Optimal B (typically in 1000s) chosen using cross-validation

Bagging Trees (Test Phase):

- For a test unlabeled example x
To avoid overfitting a decision tree to a given dataset we can average an ensemble of trees learnt on random subsets of the training data.

Bagging Trees (Training Phase):

- For $b = 1, 3, \cdots, B$
 - Choose n training samples (x_i, y_i) from \mathcal{D} uniformly at random
 - Learn a decision tree h_b on these n samples
- Store the B decision trees $h_1, h_2, \ldots h_B$
- Optimal B (typically in 1000s) chosen using cross-validation

Bagging Trees (Test Phase):

- For a test unlabeled example \mathbf{x}
- Find the decision from each of the B trees
Bagging or Bootstrap Aggregating

To avoid overfitting a decision tree to a given dataset we can average an ensemble of trees learnt on random subsets of the training data.

Bagging Trees (Training Phase):

- For $b = 1, 3, \cdots, B$
 - Choose n training samples (x_i, y_i) from D uniformly at random
 - Learn a decision tree h_b on these n samples
- Store the B decision trees $h_1, h_2, \ldots h_B$
- Optimal B (typically in 1000s) chosen using cross-validation

Bagging Trees (Test Phase):

- For a test unlabeled example x
 - Find the decision from each of the B trees
 - Assign the majority label as the label for x
Bagging: Example

- We get different splits and thresholds for different b
- Predict the label assigned by majority of the B trees
- Reduces variance without increasing bias, thus avoiding overfitting
Random Forests

- **Limitation of Bagging:** If one or more features are very informative, they will be selected by almost every tree in the bag, reducing the diversity.

- **Key Idea on Random Forests:** Reduces correlation between trees in the bag without increasing variance too much.

- Same as bagging in terms of sampling training data.

- Before each split, select \(m \leq d \) features at random as candidates for splitting \(m \sim \sqrt{d} \).

- Take majority vote of \(B \) such trees.
Increasing m, the number of splitting candidates chosen increases the correlation among the trees in the bag.
Increasing m decreases the bias but increases variance in the ensemble classifier.
Random Forests
1. Review of Ensemble Methods

2. Review of Boosting Methods: AdaBoost

3. Neural networks: Motivation

4. The Perceptron Algorithm

5. General Neural Network Architectures
Review of Boosting Methods: AdaBoost
Limitations of Bagging and Random Forests

- Bagging: Significant correlation between trees that are learnt on different training datasets.
- Random Forests try to resolve this by doing "feature bagging" but some correlation still remains.
- All B trees are given the same weight when taking the average.
Limitations of Bagging and Random Forests

- Bagging: Significant correlation between trees that are learnt on different training datasets
- Random Forests try to resolve this by doing "feature bagging" but some correlation still remains
- All B trees are given the same weight when taking the average

Boosting methods: Force classifiers to learn on different parts of the feature space, and take their weighted average
High-level idea: combine a lot of classifiers

- Sequentially construct / identify these classifiers, \(h_t(\cdot) \), one at a time
- Use \textit{weak} classifiers to arrive at a complex decision boundary (\textit{strong} classifier), where \(\beta_t \) is the contribution of each weak classifier
High-level idea: combine a lot of classifiers

- Sequentially construct / identify these classifiers, \(h_t(\cdot) \), one at a time
- Use *weak* classifiers to arrive at a complex decision boundary (*strong* classifier), where \(\beta_t \) is the contribution of each weak classifier

\[
h[x] = \text{sign} \left[\sum_{t=1}^{T} \beta_t h_t(x) \right]
\]
High-level idea: combine a lot of classifiers

- Sequentially construct / identify these classifiers, $h_t(\cdot)$, one at a time
- Use *weak* classifiers to arrive at a complex decision boundary (*strong* classifier), where β_t is the contribution of each weak classifier

$$h[x] = \text{sign} \left[\sum_{t=1}^{T} \beta_t h_t(x) \right]$$

Adaboost Algorithm: Assumptions

- Black-box routine for constructing a sequence of weak classifiers $h(\cdot)$
- The classifier needs to know how to optimize on *weighted* samples
The Adaboost Algorithm

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample
- For $t = 1$ to T
 1. Train a weak classifier $h_t(x)$ using current weights $w_t(n)$, by minimizing

$$
\epsilon_t = \sum_n w_t(n)[y_n \neq h_t(x_n)]
$$

- Output the final classifier

$$h(x) = \text{sign}\left[\sum_{t=1}^{T} \beta_t h_t(x) \right]$$
The Adaboost Algorithm

- Given: \(N \) samples \(\{x_n, y_n\} \), where \(y_n \in \{+1, -1\} \), and some way of constructing weak (or base) classifiers
- Initialize weights \(w_1(n) = \frac{1}{N} \) for every training sample
- For \(t = 1 \) to \(T \)
 1. Train a weak classifier \(h_t(x) \) using current weights \(w_t(n) \), by minimizing
 \[
 \epsilon_t = \sum_n w_t(n) [y_n \neq h_t(x_n)] \quad \text{(the weighted classification error)}
 \]
 2. Compute contribution for this classifier
The Adaboost Algorithm

- Given: \(N \) samples \(\{x_n, y_n\} \), where \(y_n \in \{+1, -1\} \), and some way of constructing weak (or base) classifiers
- Initialize weights \(w_1(n) = \frac{1}{N} \) for every training sample
- For \(t = 1 \) to \(T \)
 1. Train a weak classifier \(h_t(x) \) using current weights \(w_t(n) \), by minimizing
 \[
 \epsilon_t = \sum_n w_t(n) [y_n \neq h_t(x_n)] \quad \text{(the weighted classification error)}
 \]
 2. Compute contribution for this classifier: \(\beta_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t} \)
 3. Update weights on training points
 \[
 w_{t+1}(n) \propto w_t(n) e^{-\beta_t y_n h_t(x_n)}
 \]
 and normalize them such that \(\sum_n w_{t+1}(n) = 1 \)
- Output the final classifier
 \[
 h[x] = \text{sign} \left[\sum_{t=1}^{T} \beta_t h_t(x) \right]
 \]
Example

10 data points and 2 features

- The data points are clearly not linearly separable
- In the beginning, all data points have equal weights (the size of the data markers “+” or “-”)
10 data points and 2 features

- The data points are clearly not linearly separable
- In the beginning, all data points have equal weights (the size of the data markers “+” or “-”)
- Base classifier $h(\cdot)$: horizontal or vertical lines (‘decision stumps’)
 - Depth-1 decision trees, i.e., classify data based on a single attribute.
Round 1: $t = 1$

h_1 with 3 misclassified data points:

$\epsilon_1 = 0$.

$\beta_1 = 0.42$.

Weights recomputed; the 3 misclassified data points receive larger weights.
Round 1: $t = 1$

- 3 misclassified (with circles): $\epsilon_1 = 0.3 \rightarrow \beta_1 = 0.42$.
- Weights recomputed; the 3 misclassified data points receive larger weights
Round 2: \(t = 2 \)

- There are 3 misclassified data points (with circles).
 - \(\epsilon_2^2 = 0 \to \beta_2^2 = 0 \).
 - Note that \(\epsilon_2^2 \neq 0 \).

- Data points classified correctly in both rounds have small weights.

- 3 misclassified data points get larger weights.
Round 2: \(t = 2 \)

- 3 misclassified (with circles): \(\epsilon_2 = 0.21 \rightarrow \beta_2 = 0.65 \).
 Note that \(\epsilon_2 \neq 0.3 \) as those 3 data points have weights less than 1/10.
- 3 misclassified data points get larger weights
- Data points classified correctly in both rounds have small weights
Round 3: $t = 3$

- h_3 misclassified (with circles): $\epsilon = 0.14 \rightarrow \beta = 0.92$.
- Previously correctly classified data points are now misclassified, hence our error is low; what's the intuition?
- Since they have been consistently classified correctly, this round's mistake will hopefully not have a huge impact on the overall prediction.
Round 3: $t = 3$

- 3 misclassified (with circles): $\epsilon_3 = 0.14 \rightarrow \beta_3 = 0.92$.
- Previously correctly classified data points are now misclassified, hence our error is low; what’s the intuition?
Round 3: $t = 3$

- 3 misclassified (with circles): $\epsilon_3 = 0.14 \rightarrow \beta_3 = 0.92$.
- Previously correctly classified data points are now misclassified, hence our error is low; what’s the intuition?
 - Since they have been consistently classified correctly, this round’s mistake will hopefully not have a huge impact on the overall prediction.
Final classifier: combining 3 classifiers

\[H_{\text{final}} = \text{sign} \left(\begin{array}{c} 0.42 \\ + 0.65 \\ + 0.92 \end{array} \right) \]

- All data points are now classified correctly!
Why AdaBoost works?

It minimizes a loss function related to classification error.

Classification loss

- Suppose we want to have a classifier

\[h(x) = \text{sign}[f(x)] = \begin{cases} 1 & \text{if } f(x) > 0 \\ -1 & \text{if } f(x) < 0 \end{cases} \]

- One seemingly natural loss function is 0-1 loss:

\[\ell(h(x), y) = \begin{cases} 0 & \text{if } yf(x) > 0 \\ 1 & \text{if } yf(x) < 0 \end{cases} \]

Namely, the function \(f(x) \) and the target label \(y \) should have the same sign to avoid a loss of 1.
Surrogate loss

0 – 1 loss function $\ell(h(x), y)$ is non-convex and difficult to optimize.

We can instead use a surrogate loss – what are examples?
Surrogate loss

0 – 1 loss function $\ell(h(x), y)$ is non-convex and difficult to optimize. We can instead use a surrogate loss – what are examples?

Exponential Loss

$$\ell^{\text{EXP}}(h(x), y) = e^{-yf(x)}$$
Choosing the t-th classifier

Suppose a classifier $f_{t-1}(x)$, and want to add a weak learner $h_t(x)$

$$f(x) = f_{t-1}(x) + \beta_t h_t(x)$$

note: $h_t(\cdot)$ outputs -1 or 1, as does $\text{sign}[f_{t-1}(\cdot)]$
Choosing the t-th classifier

Suppose a classifier $f_{t-1}(x)$, and want to add a weak learner $h_t(x)$

$$f(x) = f_{t-1}(x) + \beta_t h_t(x)$$

note: $h_t(\cdot)$ outputs -1 or 1, as does sign $[f_{t-1}(\cdot)]$

How can we ‘optimally’ choose $h_t(x)$ and combination coefficient β_t?

Adaboost greedily minimizes the exponential loss function!

$$(h^*_t(x), \beta^*_t) = \text{argmin}_{(h_t(x), \beta_t)} \sum_n e^{-y_n f(x_n)}$$
Choosing the t-th classifier

Suppose a classifier $f_{t-1}(x)$, and want to add a weak learner $h_t(x)$

$$f(x) = f_{t-1}(x) + \beta_t h_t(x)$$

note: $h_t(\cdot)$ outputs -1 or 1, as does sign $[f_{t-1}(\cdot)]$

How can we ‘optimally’ choose $h_t(x)$ and combination coefficient β_t?

Adaboost greedily minimizes the exponential loss function!

$$(h^*_t(x), \beta^*_t) = \arg\min_{(h_t(x), \beta_t)} \sum_n e^{-y_nf(x_n)}$$

$$= \arg\min_{(h_t(x), \beta_t)} \sum_n e^{-y_n[f_{t-1}(x_n)+\beta_t h_t(x_n)]}$$
Choosing the t-th classifier

Suppose a classifier $f_{t-1}(x)$, and want to add a weak learner $h_t(x)$

$$f(x) = f_{t-1}(x) + \beta_t h_t(x)$$

note: $h_t(\cdot)$ outputs -1 or 1, as does sign [$f_{t-1}(\cdot)$]

How can we ‘optimally’ choose $h_t(x)$ and combination coefficient β_t?

Adaboost greedily \textit{minimizes the exponential loss function!}

\begin{align*}
(h_t^*(x), \beta_t^*) &= \arg\min_{(h_t(x), \beta_t)} \sum_n e^{-y_nf(x_n)} \\
&= \arg\min_{(h_t(x), \beta_t)} \sum_n e^{-y_n[f_{t-1}(x_n) + \beta_t h_t(x_n)]} \\
&= \arg\min_{(h_t(x), \beta_t)} \sum_n w_t(n) e^{-y_n\beta_t h_t(x_n)}
\end{align*}

where we have used $w_t(n)$ as a shorthand for $e^{-y_n f_{t-1}(x_n)}$
We can decompose the \textit{weighted} loss function into two parts

\[
\sum_n w_t(n) e^{-y_n \beta_t h_t(x_n)} = \sum_n w_t(n) e^{\beta_t \mathbb{I}[y_n \neq h_t(x_n)]} + \sum_n w_t(n) e^{-\beta_t \mathbb{I}[y_n = h_t(x_n)]}
\]
We can decompose the *weighted* loss function into two parts

\[
\sum_n w_t(n) e^{-y_n \beta_t h_t(x_n)}
\]

\[
= \sum_n w_t(n) e^{\beta_t [y_n \neq h_t(x_n)]} + \sum_n w_t(n) e^{-\beta_t [y_n = h_t(x_n)]}
\]

\[
= \sum_n w_t(n) e^{\beta_t [y_n \neq h_t(x_n)]} + \sum_n w_t(n) e^{-\beta_t (1 - [y_n \neq h_t(x_n)])}
\]
We can decompose the \textit{weighted} loss function into two parts

\[
\sum_{n} w_t(n) e^{-y_n \beta_t h_t(x_n)}
\]

\[
= \sum_{n} w_t(n) e^{\beta_t} \mathbb{I}[y_n \neq h_t(x_n)] + \sum_{n} w_t(n) e^{-\beta_t} \mathbb{I}[y_n = h_t(x_n)]
\]

\[
= \sum_{n} w_t(n) e^{\beta_t} \mathbb{I}[y_n \neq h_t(x_n)] + \sum_{n} w_t(n) e^{-\beta_t} (1 - \mathbb{I}[y_n \neq h_t(x_n)])
\]

\[
= (e^{\beta_t} - e^{-\beta_t}) \sum_{n} w_t(n) \mathbb{I}[y_n \neq h_t(x_n)] + e^{-\beta_t} \sum_{n} w_t(n)
\]

We have used the following properties to derive the above:

- $y_n h_t(x_n)$ is either 1 or -1 as $h_t(x_n)$ is the output of a binary classifier.
- The indicator function $\mathbb{I}[y_n = h_t(x_n)]$ is either 0 or 1, so it equals $1 - \mathbb{I}[y_n \neq h_t(x_n)]$.
Finding the optimal weak learner

Summary

\[(h_t^*(x), \beta_t^*) = \arg\min_{h_t(x), \beta_t} \sum_n w_t(n)e^{-y_n \beta_t h_t(x_n)}\]

\[= \arg\min_{h_t(x), \beta_t} (e^{\beta_t} - e^{-\beta_t}) \sum_n w_t(n)\mathbb{I}[y_n \neq h_t(x_n)]\]

\[+ e^{-\beta_t} \sum_n w_t(n)\]

What term(s) must we optimize to choose \(h_t(x_n)\)?
Finding the optimal weak learner

Summary

\[(h^*_t(x), \beta^*_t) = \arg\min_{(h_t(x), \beta_t)} \sum_n w_t(n) e^{-y_n \beta_t h_t(x_n)}\]

\[= \arg\min_{(h_t(x), \beta_t)} (e^{\beta_t} - e^{-\beta_t}) \sum_n w_t(n) [y_n \neq h_t(x_n)] + e^{-\beta_t} \sum_n w_t(n)\]

What term(s) must we optimize to choose \(h_t(x_n)\)?

\[h^*_t(x) = \arg\min_{h_t(x)} \epsilon_t = \sum_n w_t(n) [y_n \neq h_t(x_n)]\]
Finding the optimal weak learner

Summary

\[
(h^*_t(x), \beta^*_t) = \arg\min_{h_t(x), \beta_t} \sum_n w_t(n)e^{-y_n\beta_t h_t(x_n)}
\]

\[
= \arg\min_{h_t(x), \beta_t} (e^{\beta_t} - e^{-\beta_t}) \sum_n w_t(n)[y_n \neq h_t(x_n)] + e^{-\beta_t} \sum_n w_t(n)
\]

What term(s) must we optimize to choose \(h_t(x_n)\)?

\[
h^*_t(x) = \arg\min_{h_t(x)} \epsilon_t = \sum_n w_t(n)[y_n \neq h_t(x_n)]
\]

Minimize weighted classification error as noted in step 1 of Adaboost!
How to choose β_t?

Summary

$$(h^*_t(x), \beta^*_t) = \arg\min_{(h_t(x), \beta_t)} \sum_n w_t(n) e^{-y_n \beta_t h_t(x_n)}$$

$$= \arg\min_{(h_t(x), \beta_t)} (e^{\beta_t} - e^{-\beta_t}) \sum_n w_t(n) [y_n \neq h_t(x_n)]$$

$$+ e^{-\beta_t} \sum_n w_t(n)$$

What term(s) must we optimize?
How to choose β_t?

Summary

$$(h_t^*(x), \beta_t^*) = \arg\min_{(h_t(x), \beta_t)} \sum_n w_t(n) e^{-y_n \beta_t h_t(x_n)}$$

$$= \arg\min_{(h_t(x), \beta_t)} (e^{\beta_t} - e^{-\beta_t}) \sum_n w_t(n) \mathbb{1}[y_n \neq h_t(x_n)]$$

$$+ e^{-\beta_t} \sum_n w_t(n)$$

What term(s) must we optimize?

We need to minimize the entire objective function with respect to β_t!
How to choose β_t?

Summary

$$(h^*_t(x), \beta^*_t) = \arg\min_{(h_t(x), \beta_t)} \sum_n w_t(n) e^{-y_n \beta_t h_t(x_n)}$$

$$= \arg\min_{(h_t(x), \beta_t)} (e^{\beta_t} - e^{-\beta_t}) \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(x_n)] + e^{-\beta_t} \sum_n w_t(n)$$

What term(s) must we optimize?

We need to minimize the entire objective function with respect to β_t!

We can do this by taking derivative with respect to β_t, setting to zero, and solving for β_t. After some calculation and using $\sum_n w_t(n) = 1$, we find:

$$\beta^*_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

which is precisely step 2 of Adaboost! (Exercise – verify the solution)
Once we find the optimal weak learner we can update our classifier:

\[f(x) = f_{t-1}(x) + \beta_t^* h_t^*(x) \]
Updating the weights

Once we find the optimal weak learner we can update our classifier:

\[f(x) = f_{t-1}(x) + \beta_t^* h_t^*(x) \]

We then need to compute the weights for the above classifier as:

\[w_{t+1}(n) = e^{-y_n f(x_n)} = e^{-y_n[f_{t-1}(x) + \beta_t^* h_t^*(x_n)]} \]
Updating the weights

Once we find the optimal weak learner we can update our classifier:

\[f(x) = f_{t-1}(x) + \beta^*_t h^*_t(x) \]

We then need to compute the weights for the above classifier as:

\[w_{t+1}(n) = e^{-y_nf(x_n)} = e^{-y_n[f_{t-1}(x) + \beta^*_t h^*_t(x_n)]} \]

\[= w_t(n)e^{-y_n\beta^*_t h^*_t(x_n)} \]
Once we find the optimal weak learner we can update our classifier:

\[f(x) = f_{t-1}(x) + \beta_t^* h_t^*(x) \]

We then need to compute the weights for the above classifier as:

\[
w_{t+1}(n) = e^{-y_n f(x_n)} = e^{-y_n [f_{t-1}(x) + \beta_t^* h_t^*(x_n)]}
\]

\[
= w_t(n) e^{-y_n \beta_t^* h_t^*(x_n)} = \begin{cases}
 w_t(n) e^{\beta_t^*} & \text{if } y_n \neq h_t^*(x_n) \\
 w_t(n) e^{-\beta_t^*} & \text{if } y_n = h_t^*(x_n)
\end{cases}
\]

Intuition Misclassified data points will get their weights increased, while correctly classified data points will get their weight decreased.
Note that the AdaBoost algorithm itself never specifies how we would get $h^*_t(x)$ as long as it minimizes the weighted classification error

$$
\epsilon_t = \sum_n w_t(n) \mathbb{1}[y_n \neq h^*_t(x_n)]
$$

In this aspect, the AdaBoost algorithm is a meta-algorithm and can be used with any type of classifier
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data

- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness

 - Two common ensemble methods for decision trees
 - Bagging – Train B trees on random subsets of training data. Can lead to highly correlated trees
 - Random Forests – In addition to bagging, randomly sample m candidate features at each split. De-correlates the trees better

- Boosting Methods: AdaBoost
 - Sequentially add weak classifiers
 - Increase the weight hard training points
 - Take weighted average of the outputs of the resulting classifiers

- Decision trees are commonly used as base classifiers in AdaBoost.
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data.
- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness.
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data
- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness
- Two common ensemble methods for decision trees
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data.
- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness.
- Two common ensemble methods for decision trees:
 - Bagging – Train B trees on random subsets of training data. Can lead to highly correlated trees.
 - Random Forests – In addition to bagging, randomly sample m candidate features at each split. De-correlates the trees better.
- Boosting Methods: AdaBoost
 - Sequentially add weak classifiers.
 - Increase the weight of hard training points.
 - Take weighted average of the outputs of the resulting classifiers.

Decision trees are commonly used as base classifiers in AdaBoost.
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data.
- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness.
- Two common ensemble methods for decision trees:
 - Bagging – Train B trees on random subsets of training data. Can lead to highly correlated trees.
 - Random Forests – In addition to bagging, randomly sample m candidate features at each split. De-correlates the trees better.
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data.

- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness.

- Two common ensemble methods for decision trees:
 - Bagging – Train B trees on random subsets of training data. Can lead to highly correlated trees.
 - Random Forests – In addition to bagging, randomly sample m candidate features at each split. De-correlates the trees better.

- Boosting Methods: AdaBoost
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data.
- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness.
- Two common ensemble methods for decision trees:
 - Bagging – Train B trees on random subsets of training data. Can lead to highly correlated trees.
 - Random Forests – In addition to bagging, randomly sample m candidate features at each split. De-correlates the trees better.
- Boosting Methods: AdaBoost
 - Sequentially add weak classifiers.
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data.
- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness.
- Two common ensemble methods for decision trees:
 - Bagging – Train B trees on random subsets of training data. Can lead to highly correlated trees.
 - Random Forests – In addition to bagging, randomly sample m candidate features at each split. De-correlates the trees better.
- Boosting Methods: AdaBoost
 - Sequentially add weak classifiers.
 - Increase the weight hard training points.
Mini-Summary

• Decision Trees have high variance and thus can change drastically with small changes in training data

• Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness

• Two common ensemble methods for decision trees
 • Bagging – Train B trees on random subsets of training data. Can lead to highly correlated trees
 • Random Forests – In addition to bagging, randomly sample m candidate features at each split. De-correlates the trees better

• Boosting Methods: AdaBoost
 • Sequentially add weak classifiers
 • Increase the weight hard training points
 • Take weighted average of the outputs of the resulting classifiers
Mini-Summary

- Decision Trees have high variance and thus can change drastically with small changes in training data.
- Ensemble Methods combine outputs of many weak classifiers in order to provide more robustness.
- Two common ensemble methods for decision trees:
 - Bagging – Train B trees on random subsets of training data. Can lead to highly correlated trees.
 - Random Forests – In addition to bagging, randomly sample m candidate features at each split. De-correlates the trees better.
- Boosting Methods: AdaBoost
 - Sequentially add weak classifiers.
 - Increase the weight hard training points.
 - Take weighted average of the outputs of the resulting classifiers.
- Decision trees are commonly used as base classifiers in AdaBoost.
Neural networks: Motivation
Logistic Regression: How to Handle Complex Boundaries?

- This data is not linear separable
- Use non-linear basis functions to add more features
Logistic Regression: How to Handle Complex Boundaries?

- This data is not linear separable
- Use non-linear basis functions to add more features
Adding polynomial features

- New feature vector is \(\mathbf{x} = [1, x_1, x_2, x_1^2, x_2^2] \)
- \(\Pr(y = 1|\mathbf{x}) = \sigma(w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2) \)
- If \(\mathbf{w} = [-1, 0, 0, 1, 1] \), the boundary is \(-1 + x_1^2 + x_2^2 = 0\)
 - If \(-1 + x_1^2 + x_2^2 \geq 0\) declare spam
 - If \(-1 + x_1^2 + x_2^2 < 0\) declare ham
Adding polynomial features

• New feature vector is \(\mathbf{x} = [1, x_1, x_2, x_1^2, x_2^2] \)
• \(\Pr(y = 1|\mathbf{x}) = \sigma(w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2) \)
• If \(\mathbf{w} = [-1, 0, 0, 1, 1] \), the boundary is \(-1 + x_1^2 + x_2^2 = 0\)
 • If \(-1 + x_1^2 + x_2^2 \geq 0\) declare spam
 • If \(-1 + x_1^2 + x_2^2 < 0\) declare ham

\[-1 + x_1^2 + x_2^2 = 0\]
But what if we had a large number of features?

Each feature x_i is one pixel in an 100×100 input image

- Adding polynomial features would result in an enormous $\phi(x)$
But what if we had a large number of features?

Each feature x_i is one pixel in an 100×100 input image

- Adding polynomial features would result in an enormous $\phi(x)$
- Can we somehow only retain the important features?
But what if we had a large number of features?

Each feature x_i is one pixel in an 100×100 input image.

- Adding polynomial features would result in an enormous $\phi(x)$
- Can we somehow only retain the important features?
- We will need to carefully hand-pick them, which can be hard and tedious
But what if we had a large number of features?

Each feature \(x_i \) is one pixel in an 100 \(\times \) 100 input image

- Adding polynomial features would result in an enormous \(\phi(x) \)
- Can we somehow only retain the important features?
- We will need to carefully hand-pick them, which can be hard and tedious
- Neural networks automate this for us!
Neural Network Compress the Set of Features

- Start with feature vector \mathbf{x} containing all pixels in the image
Neural Network Compress the Set of Features

- Start with feature vector \mathbf{x} containing all pixels in the image
- Layer 1: distill the edges of the image
- Layer 2: distill triangles, circles, etc.
- Layer 3: recognize pointy ears, fur style etc.
- Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the training data.
Neural Network Compress the Set of Features

- Start with feature vector \mathbf{x} containing all pixels in the image
- Layer 1: distill the edges of the image
- Layer 2: distill triangles, circles, etc.
- Layer 3: recognize pointy ears, fur style, etc.
- Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the training data.
Neural Network Compress the Set of Features

- Start with feature vector \mathbf{x} containing all pixels in the image
- Layer 1: distill the edges of the image
- Layer 2: distill triangles, circles, etc.
- Layer 3: recognize pointy ears, fur style etc.
Neural Network Compress the Set of Features

- Start with feature vector x containing all pixels in the image
- Layer 1: distill the edges of the image
- Layer 2: distill triangles, circles, etc.
- Layer 3: recognize pointy ears, fur style etc.
- Layer 4: performs logistic regression on the features in layer 3
Neural Network Compress the Set of Features

- Start with feature vector \(\mathbf{x} \) containing all pixels in the image
- Layer 1: distill the edges of the image
- Layer 2: distill triangles, circles, etc.
- Layer 3: recognize pointy ears, fur style etc.
- Layer 4: performs logistic regression on the features in layer 3
Neural Network Compress the Set of Features

- Start with feature vector \(\mathbf{x} \) containing all pixels in the image
- Layer 1: distill the edges of the image
- Layer 2: distill triangles, circles, etc.
- Layer 3: recognize pointy ears, fur style etc.
- Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the training data
Inspiration from Biology: How does our brain work?

Each feature x_i is one pixel in an 100×100 input image

- Humans easily perform such complex image or speech recognition tasks
- We cannot exactly describe a set of rules by which we distinguish cats vs. dogs, but we almost always know the correct answers when a new image is presented to us
- How do our brains learn these complex tasks?
Neurons in the Brain

- Each neuron is a non-linear computing unit
- It collects input signals from neighboring neurons
- Output of its computation is transmitted through the axon
- Other neurons use this output as the input signal

An average human brain has \(\sim 100 \text{ billion neurons!} \)
Plasticity of Neurons in the Brain

- Different parts of our brain are specialized for different tasks
- But they can be re-wired to adapt to different inputs
- The auditory cortex can be taught to see and the visual cortex can be taught to listen!
- Based on these observations, scientists concluded that all the neurons are structurally homogeneous
Based on the biological insights, a mathematical model for an ‘artificial’ neuron was developed

- Each input x_i is multiplied by weight w_i
- Add a $+1$ input neuron which is multiplied by the bias b
- Apply a non-linear function g to the weighted combination of the inputs, $\mathbf{w}^T \mathbf{x} + b$
- Different candidates for g: heaviside function, sigmoid, tanh, rectified linear unit, etc.
1. Review of Ensemble Methods

2. Review of Boosting Methods: AdaBoost

3. Neural networks: Motivation

4. The Perceptron Algorithm

5. General Neural Network Architectures
The Perceptron Algorithm
The perception is a single-unit neural network with the heavyside activation function or $\text{sign}(x)$.
• The perception is a single-unit neural network with the heavyside activation function or $\text{sign}(x)$.
• It considers a linear binary classification problem to distinguish between two classes $\{-1, +1\}$.

$$g(w^T x + b), \text{Linear comb. of features}$$
Perceptron: Rosenblatt (1957)

- The perception is a single-unit neural network with the heavyside activation function or $\text{sign}(x)$.
- It considers a linear binary classification problem to distinguish between two classes $\{-1, +1\}$.

![Perceptron diagram]

- Assign label $\text{sign}(\mathbf{w}^T \mathbf{x} + b)$ to a new sample.
The perceptron is a single-unit neural network with the heaviside activation function or \(\text{sign}(x) \). It considers a linear binary classification problem to distinguish between two classes \([-1, +1]\).

\[
g(w^T x + b) = \begin{cases}
1 & \text{if } w^T x + b > 0 \\
0 & \text{otherwise}
\end{cases}
\]

- Assign label \(\text{sign}(w^T x + b) \) to a new sample
- Notation change: Merge \(b \) into the vector \(w \) and append 1 to the vector \(x \)
How to learn the weights w?

The objective is to learn w that minimizes the number of errors on the training dataset. That is, minimize

$$
\varepsilon = \sum_n \mathbb{I}[y_n \neq \text{sign}(w^\top x_n)]
$$

Algorithm: For a randomly chosen data point (x_n, y_n) make small changes to w so that

$$
y_n = \text{sign}(w^\top x_n)
$$
How to learn the weights w?

The objective is to learn w that minimizes the number of errors on the training dataset. That is, minimize

$$\varepsilon = \sum_n \mathbb{1}[y_n \neq \text{sign}(w^\top x_n)]$$

Algorithm: For a randomly chosen data point (x_n, y_n) make small changes to w so that

$$y_n = \text{sign}(w^\top x_n)$$

Two cases

- If $y_n = \text{sign}(w^\top x_n)$, do nothing.
- If $y_n \neq \text{sign}(w^\top x_n)$,

$$w^{\text{NEW}} \leftarrow w^{\text{OLD}} + y_n x_n$$
If \(y_n \neq \text{sign}(w^\top x_n) \), then

\[y_n(w^\top x_n) < 0 \]
Why would it work?

If $y_n \neq \text{sign}(w^\top x_n)$, then

$$y_n(w^\top x_n) < 0$$

What would happen if we change to new $w^{\text{NEW}} = w + y_n x_n$?

$$y_n[(w + y_n x_n)^\top x_n] = y_n w^\top x_n + y_n^2 x_n^\top x_n$$
Why would it work?

If \(y_n \neq \text{sign}(w^\top x_n) \), then

\[
y_n(w^\top x_n) < 0
\]

What would happen if we change to new \(w^{\text{NEW}} = w + y_nx_n \)?

\[
y_n[(w + y_nx_n)^\top x_n] = y_n w^\top x_n + y_n^2 x_n^\top x_n
\]

We are adding a positive number, so it is possible that

\[
y_n(w^{\text{NEW}}^\top x_n) > 0
\]

i.e., we are more likely to classify correctly
Iteratively solving one case at a time

- REPEAT
- Pick a data point x_n (can be a fixed order of the training instances)
- Make a prediction $y = \text{sign}(w^T x_n)$ using the current w.
Iteratively solving one case at a time

- REPEAT
- Pick a data point x_n (can be a fixed order of the training instances)
- Make a prediction $y = \text{sign}(\mathbf{w}^\top \mathbf{x}_n)$ using the current \mathbf{w}.
- If $y = y_n$, do nothing.
 Else,
 \[\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n. \]
- UNTIL converged.
Properties

• This is an online algorithm (works when data is arriving sequentially as a stream)
• If the training data is linearly separable, the algorithm stops in a finite number of steps.
• The parameter vector is always a linear combination of training instances (requires initialization of $w_0 = 0$).
• We don’t need to set a learning rate

The perceptron algorithm was used in old times to train w by hand, without a computer.
Outline

1. Review of Ensemble Methods
2. Review of Boosting Methods: AdaBoost
3. Neural networks: Motivation
4. The Perceptron Algorithm
5. General Neural Network Architectures
General Neural Network Architectures
• Suppose g is the sigmoid function $\sigma(w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$

• We can find a linear decision boundary separating two classes. The output is the probability of x belonging to class 1.
Binary Logistic Regression

• Suppose g is the sigmoid function $\sigma(w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$

• We can find a linear decision boundary separating two classes. The output is the probability of x belonging to class 1.

• This is binary logistic regression, which we already know.
We can construct many common functions using just a single neuron.
Example: Logic Gates

We can construct many common functions using just a single neuron.

\[\sigma(w^T x + b) \]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
We can construct many common functions using just a single neuron:

\[
\sigma(x_1, x_2, +1) = \sigma(\mathbf{w}^T \mathbf{x} + b)
\]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

This is the OR gate.
Example: Logic Gates

We can construct many common functions using just a single neuron

\[
x_1 \quad \sigma \quad 20 \\
x_2 \quad 20 \\
+1 \quad -30 \\
\sigma \left(w^T x + b \right)
\]

This is the AND gate
Example: Logic Gates

We can construct many common functions using just a single neuron

\[\sigma(\mathbf{w}^T \mathbf{x} + b) \]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example: Logic Gates

We can construct many common functions using just a single neuron

\[
\sigma(\mathbf{w}^T \mathbf{x} + b)
\]

This is the AND gate
Learning weights w using SGD

Cross-entropy Error Function

$$\mathcal{E}(w) = -\sum_n \{ y_n \log \sigma(w^\top x_n) + (1 - y_n) \log[1 - \sigma(w^\top x_n)] \}$$

Gradient descent for logistic regression

- Choose a proper step size $\eta > 0$
- Iteratively update the parameters following the negative gradient to minimize the error function

$$w(t+1) \leftarrow w(t) - \eta \sum_n \{ \sigma(w^\top x_n) - y_n \} x_n$$
Learning weights w using SGD

Cross-entropy Error Function

$$\mathcal{E}(w) = -\sum_n \{y_n \log \sigma(w^\top x_n) + (1 - y_n) \log[1 - \sigma(w^\top x_n)]\}$$

Gradients

$$\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_n \{\sigma(w^\top x_n) - y_n\} x_n$$

Gradient descent for logistic regression

- Choose a proper step size $\eta > 0$
- Iteratively update the parameters following the negative gradient to minimize the error function

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \sum_n \{\sigma(w^\top x_n) - y_n\} x_n$$
Can we build an XOR Gate?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- No, because this data is not linearly separable.
- We can create a combination of other logic gates $(x_1 + x_2)(\overline{x_1} + \overline{x_2})$
- Equivalent to creating a multi-layer neural network
Multi-layer Neural Network

- w_{ij}: weights connecting node i in layer $(\ell - 1)$ to node j in layer ℓ.
Multi-layer Neural Network

- w_{ij}: weights connecting node i in layer $(\ell - 1)$ to node j in layer ℓ.
- b_j, b_k: bias for nodes j and k.
- u_j, u_k: inputs to nodes j and k (where $u_j = b_j + \sum_i x_i w_{ij}$).

Nodes in the hidden layer

Apply g_j to u_j
Multi-layer Neural Network

- w_{ij}: **weights** connecting node i in layer $(\ell - 1)$ to node j in layer ℓ.
- b_j, b_k: **bias** for nodes j and k.
- u_j, u_k: **inputs to nodes j and $k** (where $u_j = b_j + \sum_i x_i w_{ij}$).
- g_j, g_k: **activation function** for node j (applied to u_j) and node k.
- $y_j = g_j(u_j)$, $z_k = g_k(u_k)$: **output/activation** of nodes j and k.

Apply g_j to u_j

Nodes in the hidden layer

50
Multi-layer Neural Network

- w_{ij}: weights connecting node i in layer $(\ell - 1)$ to node j in layer ℓ.
- b_j, b_k: bias for nodes j and k.
- u_j, u_k: inputs to nodes j and k (where $u_j = b_j + \sum_i x_i w_{ij}$).
- g_j, g_k: activation function for node j (applied to u_j) and node k.
- $y_j = g_j(u_j), z_k = g_k(u_k)$: output/activation of nodes j and k.
- t_k: target value for node k in the output layer.
Neural Networks are Very Powerful

- With enough neurons and layers we can represent very complex input-output relationships
- Can be used for regression, classification, embedding, and many other ML applications
Expressing outputs z in terms of inputs x is called forward-propagation. This is the operation that is performed when doing inference with a trained neural network.

Exercise: Perform forward propagation for the 1-hidden layer neural network shown above. Assume that we are using the sigmoid activation function.
• Outputs of the hidden layer are
Exercise: Forward-Propagation

- Outputs of the hidden layer are $\sigma(0.5x + 1)$ and $\sigma(x + 0.5)$
- Input to the last layer is
• Outputs of the hidden layer are $\sigma(0.5x + 1)$ and $\sigma(x + 0.5)$
• Input to the last layer is $0.5\sigma(0.5x + 1) + 0.5\sigma(x + 0.5) + 0.25$
• $z = \sigma(0.5\sigma(0.5x + 1) + 0.5\sigma(x + 0.5) + 0.25)$