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Announcements

e Homework 5: deadline extended to April 3rd
e Final exam
e Multiple-choice questions will be an online timed quiz during the
lecture time on Apr 29th (we will take potential internet issues and
timezones into account when setting the time)
e Descriptive questions will be a take-home exam (1-2 days)
e More details to follow
e Please let us know asap if you have conflicting exams or need special

accommodations

e Recitation this week on clustering and GMMs



1. Review: Clustering and k-means

2. Gaussian mixture models
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Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1,y1), ... (Xn, Yn)}

e Labels ‘teach’ algorithm to learn mapping from observations to labels

e Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest
Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)
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Supervised Learning: labeled observations {(x1,y1), ... (Xn, ¥n)}

e Labels ‘teach’ algorithm to learn mapping from observations to labels

e Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest
Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {xi, ..., x,}

e Learning algorithm must find latent structure from features alone
e Can be goal in itself (discover hidden patterns, exploratory analysis)
e Can be means to an end (pre-processing for supervised task)

e Examples:

e Clustering
e Dimensionality Reduction: Transform an initial feature representation

into a more concise representation
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Clustering

Setup Given D = {x,}M_; and K, we want to output:

° {uk},’f:l: prototypes of clusters

e A(x,) €{1,2,...,K}: the cluster membership

Toy Example Cluster data into two clusters.
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Example Applications

e Identify communities within social networks

e Find topic groups in news stories

e Group similar sequences into gene families




k-means

k-means: an iterative clustering method

High-level idea:
e [nitialize: Pick k random points as cluster centers, {p1, ..., 1k}
e Alternate:
1. Assign data points to closest cluster center in {1, ..., 1}

2. Change each cluster center to the average of its assigned points

e Stop: When the clusters are stable



k-means example (several iterations)
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k-means clustering: details

Intuition: Data points assigned to cluster k should be near prototype g,

Distortion measure: (clustering objective function, cost function)
K
J=0 > rdlxn — P
n=1 k=1

where ry € {0,1} is an indicator variable
re =1 if and only if A(x,) =k

Notes:

e Distance measure: ||x, — p,||? calculates how far x,, is from the

cluster center p
%, but could be something

e Canonical example is the 2-norm, i.e.,

else!



Algorithm

Minimize distortion Alternative optimization between {r,} and {p,}

e Step 0 Initialize {, } to some values

e Step 1 Fix {y,} and minimize over {ry}, to get this assignment:

L)1 if k = argmin; ||x, — p;||?
ke 0 otherwise

Why do we get this? — Try to derive it from the expression of J
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Algorithm

Minimize distortion Alternative optimization between {r,} and {p,}

Step 0 Initialize {p1, } to some values

Step 1 Fix {p,} and minimize over {r,}, to get this assignment:

L)1 if k = argmin; ||x, — p;||?
ke 0 otherwise

Why do we get this? — Try to derive it from the expression of J

e Step 2 Fix {rn,«} and minimize over {y,} to get this update:
e = En I'nkXn
k Zn I'nk

Why do we get this? — Try to derive it from the expression of J

Step 3 Return to Step 1 unless stopping criterion is met
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Properties of k-means algorithm

Does it converge?

e Guaranteed to converge in a finite number of iterations

e Key idea: k-means is an alternating optimization approach

e Each step is guaranteed to decrease the objective/cost
function—thus guaranteed to converge

e *However*, may converge to a local minimum (objective is

non-convex)

What's the runtime?

e Running time per iteration:
e Assume: n data points, each with d features, and k clusters
e Assign data points to closest cluster: O(ndk)
e Re-compute cluster centers: O(ndk)
e Thus, total runtime is: O(ndki), where i is the number of
iterations



Practical Issues with k-means

e How to select k?

e Prior knowledge
e Heuristics (e.g., elbow method)

e How to select distance measure?

e Often requires some knowledge of problem
e Some examples: Euclidean distance (for images), Hamming distance
(distance between two strings), shared key words (for websites)

e How to initialize cluster centers?

e The final clustering can depend significantly on the initial points you
pick!

10



Elbow method

Key idea: select a small value of k that minimizes within-cluster distances

g |+=
) \
\u
\

g8 |\
3 .
5 \
o \
k=] A
: \
=]
@w o
w o |
& o
g ” -
] AN
< "
=
= \

8 | [}

S

T—r——n—p—5—u o
T T T T T T T
2 4 3] & 10 12 14

Mumber of Clusters
11



How to get k-means to work on this data?
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How to get k-means to work on this data?

Should look at the distance of the data points from the origin /x2 + y?2

12



Distance measure

Changing features (distance measure) can help

If the cluster i mean is (1 x, fti,y), the distance of (x,, y,) from it can be

defined as |, /p?, + 17, — /X2 + y2|

13



Key idea: Run k-means, but with a better initialization

e Choose center p; at random

e Forj=2... k
e Choose uj among xi, ..., X, with probability:
o P(uj = xi) oc miny <j|x: — ||

Initialization helps to get good coverage of the space

Theorem: k-means++ always obtains a O(logk) approximation to the

optimal solution in expectation.

Running k-means after this initialization can only improve on the result

14



k-means++
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Connection to k-Nearest bors

e Nearest Neighbors is a supervised learning method
e Each training point x, has a corresponding given label y,
e Objective: Assign label to a new x by looking at the labels of its k
nearest points
e Clustering is an unsupervised learning method
e \We are given training points x, without labels
e Objective: Divide them into k groups to understand patterns in the
data

16



Clustering can make Nearest Neighbors more efficient

e A drawback of nearest neighbors is that we have to remember the

training data

e Clustering can help compress the training data into a small number
of representative points

Algorithm to Improve Nearest Neighbors

e For all training data points x, with label y, = ¢, for C classes
c=1,...C, cluster the x, into R groups.

e Store these R cluster means for each of the C classes

e For a test data point x, find the k nearest neighbors among the RC
cluster means and assign their majority label to x

17



1. Review: Clustering and k-means

2. Gaussian mixture models
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Gaussian mixture models




One more potential issue with k-means ...

Data points are assigned deterministically to one (and only one) cluster
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One more potential issue with k-means ...

Data points are assigned deterministically to one (and only one) cluster

In reality, clusters may overlap, and it may be better to identify the
probability that a point belongs to each cluster
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Probabilistic interpretation of clustering?

How can we model p(x) to reflect our intuition that points stay close to
their cluster centers?
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Probabilistic interpretation of clustering?

How can we model p(x) to reflect our intuition that points stay close to

their cluster centers?

e Points seem to form 3 clusters
e We cannot model p(x) with

simple and known distributions

e E.g., the data is not a Gaussian
b/c we have 3 distinct
concentrated regions

20



Gaussian mixture models: intuition

e Key idea: Model each region
with a distinct distribution
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Gaussian mixture models: intuition

Key idea: Model each region
with a distinct distribution

Can use Gaussians — Gaussian
mixture models (GMMs)

*However*, we don't know
cluster assignments (label),
parameters of Gaussians, or
mixture components!

Must learn from unlabeled data
D= {xn}nNzl

21



Recall: Gaussian (Normal) distributions

x e N ) = 2n) ORI ep {50 i) 2 x - 0)}
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Gaussian Mixture Models: Formal Definition

GMM has the following density function for x

K

p(x) = > wieN(x|py, Zx)

e K: number of Gaussians — they are called mixture components

e 1, and X;: mean and covariance matrix of k-th component
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GMM has the following density function for x

p(x) = > wieN(x|py, Zx)

k=1

e K: number of Gaussians — they are called mixture components
e 1, and X;: mean and covariance matrix of k-th component

e wy: mixture weights (or priors) represent how much each component
contributes to final distribution. They satisfy 2 properties:
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Gaussian Mixture Models: Formal Definition

GMM has the following density function for x

K

p(x) = > wieN(x|py, Zx)

e K: number of Gaussians — they are called mixture components
e 1, and X;: mean and covariance matrix of k-th component

e wy: mixture weights (or priors) represent how much each component
contributes to final distribution. They satisfy 2 properties:

Vk we>0, and Y we=1
k

These properties ensure that p(x) is a probability density function

23



GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x,2) = p(2)p(x]2)

where z is a discrete random variable taking values between 1 and K.
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GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x,z) = p(z)p(x|z)
where z is a discrete random variable taking values between 1 and K.

Denote
wk = p(z = k)
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GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x,z) = p(z)p(x|z)
where z is a discrete random variable taking values between 1 and K.
Denote
wk = p(z = k)

Now, assume the conditional distributions are Gaussian distributions
p(x|z = k) = N(x|p, Z)

Then, the marginal distribution of x is

K

p(x) = > wieN(x|py, Zx)

Namely, the Gaussian mixture model

24



Gaussian mixtures in 1D

Mixture of 1D Gaussians
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Gaussian mixture model for clustering

pdf(obj,[x.y])
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GMMs: example

The conditional distribution between x and z

(representing color) are

p(x|z = red) = N(x|z;, 1)
p(x|z = blue) = N(x|u, E)
o s 1 p(x|z = green) = N(x|p5, X3)

27



GMMs: example

05 1

05 1

The conditional distribution between x and z
(representing color) are

p(x|z = red) = N(x|py, E1)
p(x|z = blue) = N(x|p,, X2)
p(x|z = green) = N(x|ps, X3)
The marginal distribution is thus
p(x) = p(z = red)N(x|p1;, E1)
+ p(z = blue)N(x|u,, X2)
+ p(z = green)N(x|p5, Z3)

27



Parameter estimation for Gaussian mixture models

The parameters in GMMs are

28



Parameter estimation for Gaussian mixture models

The parameters in GMMs are 6 = {wi, oy, TucbK_;
Let's first consider the simple/unrealistic case where we have labels z

Define D' = {x,, z,}N

n=1"

D= {xn}:lqul

e D' is the complete data

e D the incomplete data

How can we learn our parameters?
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Parameter estimation for Gaussian mixture models

The parameters in GMMs are 6 = {wi, oy, TucbK_;
Let's first consider the simple/unrealistic case where we have labels z

Define D' = {x,, z,}N

n=1"

D= {xn}:lqul

e D' is the complete data

e D the incomplete data
How can we learn our parameters?

Given D', the maximum likelihood estimation of the 6 is given by

0 = argmaxlogD’' = Z log p(xn, zn)

28



Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

Zlogp(xmzn Zlogp zn)p(xnlzn) *Z Z log p(z,)p(xn|zn)
n

k niz,=

where we have grouped data by cluster labels z,.
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Z log p(xmzn) = Z log P(Zn xnlzn Z Z Ing Z,, Xn|zn)
n n

k niz,=
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Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

Zlogp(xmzn Zlogp zn)p(xnlzn) *Z Z log p(z,)p(xn|zn)
n

k niz,=

where we have grouped data by cluster labels z,.

Let rox € {0,1} be a binary variable that indicates whether z, = k:

> logp(xn.za) = DY ruilog p(z = k)p(xa|z = k)
= ZZ rok [log wi + log N(xu|pes, k)]

k n

Note: in the complete setting the r,, are binary, but later we will ‘relax’
these variables and allow them to take on fractional values
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Parameter estimation for GMMs: complete data

From our previous discussion, we have

Z log p(xn, zn) = Z Z rok [log wi + log N(xn gy, X))
n k n
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From our previous discussion, we have
Z log p(xn, zn) = Z Z rok [log wi + log N(xn gy, X))
n k n

Regrouping, we have

Z log p(xn, zn) = Z Z ok log wi + Z {Z ok log N(xn| ey, Zk)}
n k n k n
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Parameter estimation for GMMs: complete data

From our previous discussion, we have

Z log p(xn, zn) = Z Z rok [log wi + log N(xn gy, X))

k

Regrouping, we have

Z log p(xn, zn) = ZZ ok log wi + Z {Z rok log N(x,,|uk,Zk)}

The term inside the braces depends on k-th component’s parameters. It is now
easy to show that (left as an exercise) the MLE is:

Z Fnk 1
w = FokX
T ZkZ A S zn: KA

> . o—,) "
k= Z e Z"k = 1) (X0 — 1)

What's the intuition?
30



Since rp is binary, the previous solution is nothing but:

e wy: fraction of total data points whose cluster label z, is k
e notethat >, > ru =N
e 1,: mean of all data points whose z, is k

e X ,: co-variance of all data points whose z, is k

31



Since rp is binary, the previous solution is nothing but:

e wy: fraction of total data points whose cluster label z, is k
e notethat >, > ru =N
e 1,: mean of all data points whose z, is k

e X ,: co-variance of all data points whose z, is k

We use the knowledge of true cluster labels z, (which imply the r,x) to
estimate 6.

What do we do when we *do not* know z, (incomplete data)
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Parameter estimation for GMMs: Incomplete data

GMM Parameters
6 = {Wk::ukvzk}szl

Incomplete Data

Our data contains observed and unobserved data, and hence is
incomplete

e Observed: D = {x,}
e Unobserved (hidden): {z,}

32



Parameter estimation for GMMs: Incomplete data

GMM Parameters
6 = {Wk::ukvzk}szl

Incomplete Data

Our data contains observed and unobserved data, and hence is
incomplete

e Observed: D = {x,}
e Unobserved (hidden): {z,}

Goal Obtain the maximum likelihood estimate of 6:

0 = argmax /((6) = argmaxlog D = arg maxz log p(x,|0)
n
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Parameter estimation for GMMs: Incomplete data

GMM Parameters
6 = {Wk::ukvzk}szl

Incomplete Data

Our data contains observed and unobserved data, and hence is
incomplete

e Observed: D = {x,}
e Unobserved (hidden): {z,}

Goal Obtain the maximum likelihood estimate of 6:

0 = argmax /((6) = argmaxlog D = arg maxz log p(x,|0)
n

=arg maxz log Z p(xn, z,|0)
n z,

The objective function ¢(8) is called the incomplete log-likelihood. -



Parameter estimation for GMMs: incomplete data

When z, is not given, we can guess it via the posterior probability (recall:
Bayes' rule!)

p(xn|zn = k)p(zn = k) _ P(xn|zn = k)p(zn = k)

p(xn) Skt P(Xalze = K)p(z0 = K)
N(Xal b Ei) X wi

Zka:1 N(Xn|ptyr, Zir) X wier

P(zn = k|xn) =
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Parameter estimation for GMMs: incomplete data

When z, is not given, we can guess it via the posterior probability (recall:
Bayes' rule!)

P(xn|zn = k)p(z5 = k) _ P(xn|zn = k)p(z5 = k)
p(xn) Zf’:l p(xn|zy = K')p(z, = K')
N(xn|p i) X wi

Zka:1 N(Xn|pepr, Zir) X wier

p(Zn = k|X,,) =

To compute the posterior probability, we need to know the parameters
0= {(U/(, My, zk}szl

Idea: Let's pretend we know these parameters so we can compute the
posterior probability.

How is that going to help us?
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Estimation with soft r,,

We define rpe = p(z, = k|x,)
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Estimation with soft r,,

We define rpe = p(z, = k|x,)

e Recall that r,, was previously binary
e Now it's a “soft” assignment of x,, to k-th component

e Each x, is assigned to a component fractionally according to
p(zn = k|xn)
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Estimation with soft r,,

We define rpe = p(z, = k|x,)

e Recall that r,, was previously binary
e Now it's a “soft” assignment of x,, to k-th component

e Each x, is assigned to a component fractionally according to
p(zn = k|xn)

If we solve for the MLE of 8 = {wy, wy, Zk},’f:l given soft r,cs, we get
the same expressions as before!

Z I'nk 1
Wk = My = E I'nkXn
n

Zkz rﬂk Z Ink
ank ) (x n—Hk)T

But remember, we're ‘cheating’ by using 8 to compute rp!

n I'nk
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Iterative procedure

Alternate between estimating r,x and computing parameters

e Step 0: initialize @ with some values (random or otherwise)
e Step 1: set rpx = p(z, = k|x,) for current 6 using Bayes Rule

Step 2: update 0 using these r,xs using MLE
Step 3: go back to Step 1

At the end convert r,, back to binary by setting the largest r,x for point
X, to 1 and others to 0.
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Iterative procedure

Alternate between estimating r,x and computing parameters

e Step 0: initialize @ with some values (random or otherwise)
e Step 1: set rpx = p(z, = k|x,) for current 6 using Bayes Rule

Step 2: update 0 using these r,xs using MLE
Step 3: go back to Step 1

At the end convert r,, back to binary by setting the largest r,x for point
X, to 1 and others to 0.

This is an example of the EM algorithm — a powerful procedure for
model estimation with hidden/latent variables

Connection with K-means?

e GMMs provide probabilistic interpretation for K-means
e K-means is “hard” GMM or GMMs is “soft” K-means

e Posterior r,, provides a probabilistic assignment for x, to cluster k
35



GMMs vs. k-means

GaussianMixture KMeans

GaussianMixture
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GMMs vs. k-means

Pros/Cons

e k-means is a simpler, more straightforward method, but might not
be as accurate because of deterministic clustering
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clustering, variance), but can be more expensive to compute
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GMMs vs. k-means

Pros/Cons

e k-means is a simpler, more straightforward method, but might not
be as accurate because of deterministic clustering

e GMMs can be more accurate, as they model more information (soft
clustering, variance), but can be more expensive to compute

e Both methods have a similar set of practical issues (having to select
k, the distance, and the initialization)
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What you should know ...

e How GMMs differ from k-means (and why we care)
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What you should know ...

e How GMMs differ from k-means (and why we care)

e The difference between complete, incomplete data/likelihood
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What you should know ...

e How GMMs differ from k-means (and why we care)
e The difference between complete, incomplete data/likelihood

e How to learn the parameters in a GMM

38
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