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Clustering, Part II

Spring 2020

ECE – Carnegie Mellon University



Announcements

• Homework 5: deadline extended to April 3rd

• Final exam

• Multiple-choice questions will be an online timed quiz during the

lecture time on Apr 29th (we will take potential internet issues and

timezones into account when setting the time)

• Descriptive questions will be a take-home exam (1-2 days)

• More details to follow

• Please let us know asap if you have conflicting exams or need special

accommodations

• Recitation this week on clustering and GMMs
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Outline

1. Review: Clustering and k-means

2. Gaussian mixture models
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Review: Clustering and k-means



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find latent structure from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation
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Clustering

Setup Given D = {xn}Nn=1 and K , we want to output:

• {µk}Kk=1: prototypes of clusters

• A(xn) ∈ {1, 2, . . . ,K}: the cluster membership

Toy Example Cluster data into two clusters.

(a)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Example Applications

• Identify communities within social networks

• Find topic groups in news stories

• Group similar sequences into gene families

4



Clustering

Setup Given D = {xn}Nn=1 and K , we want to output:

• {µk}Kk=1: prototypes of clusters

• A(xn) ∈ {1, 2, . . . ,K}: the cluster membership

Toy Example Cluster data into two clusters.

(a)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Example Applications

• Identify communities within social networks

• Find topic groups in news stories

• Group similar sequences into gene families

4



Clustering

Setup Given D = {xn}Nn=1 and K , we want to output:

• {µk}Kk=1: prototypes of clusters

• A(xn) ∈ {1, 2, . . . ,K}: the cluster membership

Toy Example Cluster data into two clusters.

(a)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Example Applications

• Identify communities within social networks

• Find topic groups in news stories

• Group similar sequences into gene families

4



Clustering

Setup Given D = {xn}Nn=1 and K , we want to output:

• {µk}Kk=1: prototypes of clusters

• A(xn) ∈ {1, 2, . . . ,K}: the cluster membership

Toy Example Cluster data into two clusters.

(a)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Example Applications

• Identify communities within social networks

• Find topic groups in news stories

• Group similar sequences into gene families

4



Clustering

Setup Given D = {xn}Nn=1 and K , we want to output:

• {µk}Kk=1: prototypes of clusters

• A(xn) ∈ {1, 2, . . . ,K}: the cluster membership

Toy Example Cluster data into two clusters.

(a)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Example Applications

• Identify communities within social networks

• Find topic groups in news stories

• Group similar sequences into gene families
4



k-means

k-means: an iterative clustering method

High-level idea:

• Initialize: Pick k random points as cluster centers, {µ1, . . . , µk}
• Alternate:

1. Assign data points to closest cluster center in {µ1, . . . , µk}
2. Change each cluster center to the average of its assigned points

• Stop: When the clusters are stable
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k-means example (several iterations)

(a)
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(g)
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k-means clustering: details

Intuition: Data points assigned to cluster k should be near prototype µk

Distortion measure: (clustering objective function, cost function)

J =
N∑

n=1

K∑
k=1

rnk ||xn − µk ||2

where rnk ∈ {0, 1} is an indicator variable

rnk = 1 if and only if A(xn) = k

Notes:

• Distance measure: ||xn − µk ||2 calculates how far xn is from the

cluster center µk

• Canonical example is the 2-norm, i.e., || · ||22, but could be something

else!
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Algorithm

Minimize distortion Alternative optimization between {rnk} and {µk}

• Step 0 Initialize {µk} to some values

• Step 1 Fix {µk} and minimize over {rnk}, to get this assignment:

rnk =

{
1 if k = argminj ||xn − µj ||2

0 otherwise

Why do we get this? – Try to derive it from the expression of J

• Step 2 Fix {rnk} and minimize over {µk} to get this update:

µk =

∑
n rnkxn∑
n rnk

Why do we get this? – Try to derive it from the expression of J

• Step 3 Return to Step 1 unless stopping criterion is met
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Properties of k-means algorithm

Does it converge?

• Guaranteed to converge in a finite number of iterations

• Key idea: k-means is an alternating optimization approach

• Each step is guaranteed to decrease the objective/cost

function—thus guaranteed to converge

• *However*, may converge to a local minimum (objective is

non-convex)

What’s the runtime?

• Running time per iteration:

• Assume: n data points, each with d features, and k clusters

• Assign data points to closest cluster: O(ndk)

• Re-compute cluster centers: O(ndk)

• Thus, total runtime is: O(ndki), where i is the number of

iterations

9
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Practical Issues with k-means

• How to select k?

• Prior knowledge

• Heuristics (e.g., elbow method)

• How to select distance measure?

• Often requires some knowledge of problem

• Some examples: Euclidean distance (for images), Hamming distance

(distance between two strings), shared key words (for websites)

• How to initialize cluster centers?

• The final clustering can depend significantly on the initial points you

pick!

10



Elbow method

Key idea: select a small value of k that minimizes within-cluster distances

11



How to get k-means to work on this data?

Should look at the distance of the data points from the origin
√
x2n + y2

n
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Distance measure

Changing features (distance measure) can help

If the cluster i mean is (µi,x , µi,y ), the distance of (xn, yn) from it can be

defined as |
√
µ2
i,x + µ2

i,y −
√

x2n + y2
n |
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k-means++

Key idea: Run k-means, but with a better initialization

• Choose center µ1 at random

• For j = 2, . . . , k

• Choose µj among x1, . . . , xn with probability:

• P(µj = xi ) ∝ minj′<j ||xi − µj′ ||2

Initialization helps to get good coverage of the space

Theorem: k-means++ always obtains a O(logk) approximation to the

optimal solution in expectation.

Running k-means after this initialization can only improve on the result

14



k-means++
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Connection to k-Nearest Neighbors

• Nearest Neighbors is a supervised learning method

• Each training point xn has a corresponding given label yn

• Objective: Assign label to a new x by looking at the labels of its k

nearest points

• Clustering is an unsupervised learning method

• We are given training points xn without labels

• Objective: Divide them into k groups to understand patterns in the

data

16



Clustering can make Nearest Neighbors more efficient

• A drawback of nearest neighbors is that we have to remember the

training data

• Clustering can help compress the training data into a small number

of representative points

Algorithm to Improve Nearest Neighbors

• For all training data points xn with label yn = c , for C classes

c = 1, . . .C , cluster the xn into R groups.

• Store these R cluster means for each of the C classes

• For a test data point x, find the k nearest neighbors among the RC

cluster means and assign their majority label to x

17



Outline

1. Review: Clustering and k-means

2. Gaussian mixture models
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Gaussian mixture models



One more potential issue with k-means . . .

Data points are assigned deterministically to one (and only one) cluster

In reality, clusters may overlap, and it may be better to identify the

probability that a point belongs to each cluster
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Probabilistic interpretation of clustering?

How can we model p(x) to reflect our intuition that points stay close to

their cluster centers?

(b)

0 0.5 1

0

0.5

1

• Points seem to form 3 clusters

• We cannot model p(x) with

simple and known distributions

• E.g., the data is not a Gaussian

b/c we have 3 distinct

concentrated regions

20
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Gaussian mixture models: intuition

(a)

0 0.5 1

0

0.5

1

• Key idea: Model each region

with a distinct distribution

• Can use Gaussians — Gaussian

mixture models (GMMs)

• *However*, we don’t know

cluster assignments (label),

parameters of Gaussians, or

mixture components!

• Must learn from unlabeled data

D = {xn}Nn=1

21
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Recall: Gaussian (Normal) distributions

x ∼ N(x |µ,Σ) = (2π)−d/2|Σ|−1/2 exp

{
−1

2
(x − µ)>Σ−1(x − µ)

}

22



Gaussian Mixture Models: Formal Definition

GMM has the following density function for x

p(x) =
K∑

k=1

ωkN(x |µk ,Σk)

• K : number of Gaussians — they are called mixture components

• µk and Σk : mean and covariance matrix of k-th component

• ωk : mixture weights (or priors) represent how much each component

contributes to final distribution. They satisfy 2 properties:

∀ k, ωk > 0, and
∑
k

ωk = 1

These properties ensure that p(x) is a probability density function
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GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x , z) = p(z)p(x |z)

where z is a discrete random variable taking values between 1 and K .

Denote

ωk = p(z = k)

Now, assume the conditional distributions are Gaussian distributions

p(x |z = k) = N(x |µk ,Σk)

Then, the marginal distribution of x is

p(x) =
K∑

k=1

ωkN(x |µk ,Σk)

Namely, the Gaussian mixture model

24
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Gaussian mixtures in 1D

25



Gaussian mixture model for clustering
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GMMs: example

(a)

0 0.5 1

0

0.5

1

The conditional distribution between x and z

(representing color) are

p(x |z = red) = N(x |µ1,Σ1)

p(x |z = blue) = N(x |µ2,Σ2)

p(x |z = green) = N(x |µ3,Σ3)

(b)

0 0.5 1
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1

The marginal distribution is thus

p(x) = p(z = red)N(x |µ1,Σ1)

+ p(z = blue)N(x |µ2,Σ2)

+ p(z = green)N(x |µ3,Σ3)
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Parameter estimation for Gaussian mixture models

The parameters in GMMs are

θ = {ωk ,µk ,Σk}Kk=1

Let’s first consider the simple/unrealistic case where we have labels z

Define D′ = {xn, zn}Nn=1, D = {xn}Nn=1

• D′ is the complete data

• D the incomplete data

How can we learn our parameters?

Given D′, the maximum likelihood estimation of the θ is given by

θ = arg max logD′ =
∑
n

log p(xn, zn)
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Parameter estimation for GMMs: complete data

The complete likelihood is decomposable∑
n

log p(xn, zn) =
∑
n

log p(zn)p(xn|zn) =
∑
k

∑
n:zn=k

log p(zn)p(xn|zn)

where we have grouped data by cluster labels zn.

Let rnk ∈ {0, 1} be a binary variable that indicates whether zn = k:∑
n

log p(xn, zn) =
∑
k

∑
n

rnk log p(z = k)p(xn|z = k)

=
∑
k

∑
n

rnk [logωk + logN(xn|µk ,Σk)]

Note: in the complete setting the rnk are binary, but later we will ‘relax’

these variables and allow them to take on fractional values
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Parameter estimation for GMMs: complete data

From our previous discussion, we have∑
n

log p(xn, zn) =
∑
k

∑
n

rnk [logωk + logN(xn|µk ,Σk)]

Regrouping, we have∑
n

log p(xn, zn) =
∑
k

∑
n

rnk logωk +
∑
k

{∑
n

rnk logN(xn|µk ,Σk)

}

The term inside the braces depends on k-th component’s parameters. It is now

easy to show that (left as an exercise) the MLE is:

ωk =

∑
n rnk∑

k

∑
n rnk

, µk =
1∑
n rnk

∑
n

rnkxn

Σk =
1∑
n rnk

∑
n

rnk(xn − µk)(xn − µk)>

What’s the intuition?
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Intuition

Since rnk is binary, the previous solution is nothing but:

• ωk : fraction of total data points whose cluster label zn is k

• note that
∑

k

∑
n rnk = N

• µk : mean of all data points whose zn is k

• Σk : co-variance of all data points whose zn is k

We use the knowledge of true cluster labels zn (which imply the rnk) to

estimate θ.

What do we do when we *do not* know zn (incomplete data)
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Parameter estimation for GMMs: Incomplete data

GMM Parameters

θ = {ωk ,µk ,Σk}Kk=1

Incomplete Data

Our data contains observed and unobserved data, and hence is

incomplete

• Observed: D = {xn}
• Unobserved (hidden): {zn}

Goal Obtain the maximum likelihood estimate of θ:

θ = arg max `(θ) = arg max logD = arg max
∑
n

log p(xn|θ)

= arg max
∑
n

log
∑
zn

p(xn, zn|θ)

The objective function `(θ) is called the incomplete log-likelihood.
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Parameter estimation for GMMs: incomplete data

When zn is not given, we can guess it via the posterior probability (recall:

Bayes’ rule!)

p(zn = k |xn) =
p(xn|zn = k)p(zn = k)

p(xn)
=

p(xn|zn = k)p(zn = k)∑K
k′=1 p(xn|zn = k ′)p(zn = k ′)

=
N(xn|µk ,Σk)× ωk∑K

k′=1 N(xn|µk′ ,Σk′)× ωk′

To compute the posterior probability, we need to know the parameters

θ = {ωk ,µk ,Σk}Kk=1

Idea: Let’s pretend we know these parameters so we can compute the

posterior probability.

How is that going to help us?
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Estimation with soft rnk

We define rnk = p(zn = k |xn)

• Recall that rnk was previously binary

• Now it’s a “soft” assignment of xn to k-th component

• Each xn is assigned to a component fractionally according to

p(zn = k|xn)

If we solve for the MLE of θ = {ωk ,µk ,Σk}Kk=1 given soft rnks, we get

the same expressions as before!

ωk =

∑
n rnk∑

k

∑
n rnk

, µk =
1∑
n rnk

∑
n

rnkxn

Σk =
1∑
n rnk

∑
n

rnk(xn − µk)(xn − µk)>

But remember, we’re ‘cheating’ by using θ to compute rnk !
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Iterative procedure

Alternate between estimating rnk and computing parameters

• Step 0: initialize θ with some values (random or otherwise)

• Step 1: set rnk = p(zn = k |xn) for current θ using Bayes Rule

• Step 2: update θ using these rnks using MLE

• Step 3: go back to Step 1

At the end convert rnk back to binary by setting the largest rnk for point

xn to 1 and others to 0.

This is an example of the EM algorithm — a powerful procedure for

model estimation with hidden/latent variables

Connection with K -means?

• GMMs provide probabilistic interpretation for K-means

• K-means is “hard” GMM or GMMs is “soft” K-means

• Posterior rnk provides a probabilistic assignment for xn to cluster k
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GMMs vs. k-means

36



GMMs vs. k-means

Pros/Cons

• k-means is a simpler, more straightforward method, but might not

be as accurate because of deterministic clustering

• GMMs can be more accurate, as they model more information (soft

clustering, variance), but can be more expensive to compute

• Both methods have a similar set of practical issues (having to select

k, the distance, and the initialization)
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What you should know . . .

• How GMMs differ from k-means (and why we care)

• The difference between complete, incomplete data/likelihood

• How to learn the parameters in a GMM
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