18-661 Introduction to Machine Learning
SVM - lI

Spring 2020

ECE — Carnegie Mellon University



Midterm Information

Midterm will be on Wednesday, 2/26 in-class.

e Closed-book except for one double-sided letter-size handwritten page

of notes that you can prepare as you wish.
e We will provide formulas for relevant probability distributions.

e You will not need a calculator. Only pen/pencil and scratch paper
are allowed.

Will cover all topics presented through this Wednesday in class (SVM
and before).

e (1) point estimation/MLE/MAP, (2) linear regression, (3) naive
Bayes, (4) logistic regression, and (5) SVMs.

e This friday's recitation will go over practice exam questions.



Midterm: Concepts That You Should Know

This is a quick overview of the most important concepts/methods/models
that you should expect to see on the midterm.

e MLE/MAP: how to find the likelihood of one or more observations
given a system model, how to incorporate knowledge of a prior
distribution, how to optimize the likelihood, loss functions

e Linear regression: how to formulate the linear regression optimization
problem, how it relates to MLE/MAP, ridge regression, overfitting
and regularization, gradient descent, bias-variance trade-off

e Naive Bayes: Bayes' rule, naive classification rule, why it is naive

e logistic regression: how to formulate logistic regression, how it
relates to MLE, comparison to naive Bayes, sigmoid function,
softmax function, cross-entropy function

e SVMs: hinge loss formulation, max-margin formulation, dual of the
SVM problem, kernel functions



1. Review of SVM Max Margin Formulation

2. A Dual View of SVMs (the short version)

w

. Lagrange Duality and KKT conditions (optional)

4. Dual Derivation of SVMs (optional)

5. Kernel SVM



Review of SVM Max Margin
Formulation



Intuition: Where to put the decision boundary?

AW x+b=0

Idea: Find a decision boundary in the "middle’ of the two classes that:

e Perfectly classifies the training data
e |s as far away from every training point as possible

Let us apply this intuition to build a classifier that MAXIMIZES THE

MARGIN between training points and the decision boundary



Defining the Margin

Margin

Smallest distance between the hyperplane and all training points

MARGIN(w, b) = min
n [[wll2

llwll2




Rescaled Margin to Avoid Scaling Ambiguity

We can further constrain the problem by scaling (w, b) such that

min y,[w ' x, + b] =1

We've fixed the numerator in the MARGIN(w, b) equation, and we have:

: T
nJ’sn n b 1
MARGIN(w, b) — min, yo[w ' x, +b]

[wll2 w2
Hence the points closest to the decision boundary are at distance m!

117'¢£m)+b:]
’ How p(z)+b=0




SVM: max margin formulation for separable data

Assuming separable training data, we thus want to solve:

max such that y,[w'x,+b]>1, V n
w.b |l

~—— scaling of w, b

margin

This is equivalent to
: 1 9
min w3
st. Yolw'x,+b]>1, V n

Given our geometric intuition, SVM is called a max margin (or large
margin) classifier. The constraints are called large margin constraints.



SVM for non-separable data

Constraints in separable setting
Yolw x,+b]>1, V n

Constraints in non-separable setting

Idea: modify our constraints to account for non-separability! Specifically,
we introduce slack variables &£, > 0:

Yn[WTXn +b]>1-E, V n

e For “hard” training points, we can increase &, until the above
inequalities are met

e What does it mean when &, is very large?



Soft-margin SVM formulation

We do not want &, to grow too large, and we can control their size by
incorporating them into our optimization problem:

min
w,b,&

1
SlwlE+cy ¢

s.t. yn[wa,7 +b>1-&, YV n
§n >0, Vn

What is the role of C?

e User-defined hyperparameter
e Trades off between the two terms in our objective

e Same idea as the regularization term in ridge regression,



How to solve this problem?

N S
min §IIWH2+CXH:£n

st. yolw'x,+b]>1-¢,, ¥ n
§n >0, Vn

e This is a convex quadratic program: the objective function is
quadratic in w and linear in £ and the constraints are linear
(inequality) constraints in w, b and &,.

e We can solve the optimization problem using general-purpose
solvers, e.g., Matlab's quadprog() function.
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A Dual View of SVMs (the short
version)



What is duality?

Duality is a way of transforming a constrained optimization

problem.
It tells us sometimes-useful information about the problem structure, and

can sometimes make the problem easier to solve.

e Dual problem is always convex—easy to solve.
e Primal and dual problems are not always equivalent.

e Dual variables tell us “how bad” constraints are.

11



What is duality?

Duality is a way of transforming a constrained optimization
problem.

It tells us sometimes-useful information about the problem structure, and
can sometimes make the problem easier to solve.

e Dual problem is always convex—easy to solve.
e Primal and dual problems are not always equivalent.

e Dual variables tell us “how bad” constraints are.

The main point you should understand is that we will solve the dual SVM
problem in lieu of the max margin (primal) formulation
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Derivation of the dual

Here is a skeleton of how to derive the dual problem.

Recipe

1.

o s~ N

Formulate the generalized Lagrangian function that incorporates the
constraints and introduces dual variables

Minimize the Lagrangian function over the primal variables
Substitute the primal variables for dual variables in the Lagrangian
Maximize the Lagrangian with respect to dual variables

Recover the solution (for the primal variables) from the dual
variables

12



Deriving the dual for SVM

Primal SVM

1

SIwl+ e,

s.t. y,,[wa,, +b>1-&, YV n

€ >0, Vn

The constraints are equivalent to the following canonical forms:

£, <0 and 1—y,[w'x,+b—& <0

Lagrangian
1
L(w, b, (&} fank, I} = €326 + S lIwll3 = 3~ Ak
+ Z an{l — )/n[WTXn + b] — &}

under the constraints that oo, > 0 and A\, > 0. 13



Deriving the dual of SVM

Lagrangian
L(w, b, (€} fe), (Aa}) = €60+ S IWIB = X A
+ Z an{l — ya[w ' x, + b] — &,}
under the constraints that «, > 0 ar,:d An > 0.

e Primal variables: w, {{,}, b; dual variables {\,}, {an}

14
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setting 8% =0, g—é =0, and % —0.
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e Minimize the Lagrangian function over the primal variables by
setting 8% =0, g—é =0, and % =0.
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Deriving the dual of SVM

Lagrangian
L(w, b, (€} fe), (Aa}) = €60+ S IWIB = X A
+ Z an{l — ya[w ' x, + b] — &,}
under the constraints that «, > 0 ar,:d An > 0.

e Primal variables: w, {{,}, b; dual variables {\,}, {a,}

e Minimize the Lagrangian function over the primal variables by
setting 8% =0, g—é =0, and % =0.

e Substitute the solutions to primal variables for dual variables in the
Lagrangian

e Maximize the Lagrangian with respect to dual variables
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Deriving the dual of SVM

Lagrangian
L(w, b, (€} fe), (Aa}) = €60+ S IWIB = X A
+ Z an{l — ya[w ' x, + b] — &,}
under the constraints that «, > 0 ar,:d An > 0.

e Primal variables: w, {{,}, b; dual variables {\,}, {a,}
e Minimize the Lagrangian function over the primal variables by

settlng oL =0, gé =0, and BL —0

° Subst|tute the solutions to pr|mal variables for dual variables in the
Lagrangian
e Maximize the Lagrangian with respect to dual variables

e After some further maths and simplifications, we have...
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Dual formulation of SVM

Dual is also a convex quadratic program

1
T
m(sx § Qp — 5 E YmYnOmOinX . X
n

m,n

st. 0<a,<C, Vn

Zanyn =0

e There are N dual variables «,, one for each data point

e Independent of the size d of x: SVM scales better for
high-dimensional feature.

e May seem like a lot of optimization variables when N is large, but
many of the «,'s become zero. «, is non-zero only if the nt" point
is a support vector

15



Why do many «,’s become zero?

1
T
max E an—i E YmYnOmQnX mXn
n

m,n

st. 0<a,<C, Vn

Zan)/n =0
n

e By strong duality and KKT complementary slackness conditions, it
tells us:
anf{l =& — ya[w ' x,+b]} =0 Vn

e This tells us that o, > 0 iff 1 — &, = y,[w " x,, + b]

e |f &, =0, then support vector is on the margin
e Otherwise, £, > 0 means that the point is an outlier

16


http://cs229.stanford.edu/notes/cs229-notes3.pdf

Visualizing the support vectors

qubﬁm) +b=1

Support vectors (e, > 0) are highlighted by the dotted orange lines.

e {,=0and 0 < a, < C when y,[w'x,+b] =1.
e &, >0and a,=0if y,[w'x, +b] <1.

17



Once we solve for a,’s, how to get w and b?

Recovering w

oL

EIOHWI;anYan

Only depends on support vectors, i.e., points with «,, > 0!

18



Once we solve for a,’s, how to get w and b?

Recovering w

oL

a—wzoaw:;anynxn

Only depends on support vectors, i.e., points with «,, > 0!
Recovering b

If0<a,<Candy,e{-11}

y,,[w—'—x,7 +bh=1
b=y,— wa,,

b=y,— Z ozmymx;x,,
m
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2. A Dual View of SVMs (the short version)

w

. Lagrange Duality and KKT conditions (optional)

4. Dual Derivation of SVMs (optional)
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Lagrange Duality and KKT
conditions (optional)




Constrained Optimization

miny f(x)
s.t. gi(x) <0, Vi
hi(x) = 0) Vj
This is the ‘primal’ problem.
f(x)

N2

Set of x that satisfy
the constraints
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Constrained Optimization

miny f(x)
s.t. gi(x) <0, Vi
hi(x) = 0) Vj

This is the ‘primal’ problem. The generalized Lagrangian is defined as
follows:
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Constrained Optimization

miny f(x)
s.t. gi(x) <0, Vi
hi(x) = 0) Vj

This is the ‘primal’ problem. The generalized Lagrangian is defined as

L(x,a,8) = f(x Zag/ +Zﬁjhj(x)
J

Consider the following function:

Op(x) = max_ L(x,c, 3)

o, B>

follows:

e If x violates a primal constraint, 0p(x) = oc;
otherwise fp(x) = f(x)
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Constrained Optimization

miny f(x)
s.t. gi(x) <0, Vi
hi(x) = 0) Vj

This is the ‘primal’ problem. The generalized Lagrangian is defined as

L(x,a,8) = f(x Zag, +Zﬁjhj(x)
J
Consider the following function:

Op(x) = max_ L(x,c, 3)

o, B>

follows:

e If x violates a primal constraint, 0p(x) = oo;
otherwise fp(x) = f(x)
e Thus miny, 8p(x) = miny maxa 8.,>0 L(x, o, B) has same solution
as the primal problem, which we denote as p*
21



Constrained Optimization

miny

-

—~
X

=

s.t.

=
<< <

)
ONO

I
o o

x
~
Il

This is the ‘primal’ problem.
Op(x) = max L(x,«a,f3)

a,B,a;=0

max L(z,a,3) is equal to f(x) for the feasible
a>0,3 . .
x and infinity everywhere else

Set of x that satisfy

th traint:
e constraints 2



Constrained Optimization — Inequality Constraints

Primal Problem

*=mind = mi L(x,
p* = min p(x) mxma,?,ii(zo (x,, B)

Dual Problem
Consider the function:

HD(awB) = mxin L(x,a,,@)

d* = 0 = in L(x,
o max p(a, B) o max min (x,c, B)

Relationship between primal and dual?
e p* > d* (weak duality)
e '‘min max’' of any function is always greater than the ‘max min’

® https://en.wikipedia.org/wiki/MaxE2/80%93min_inequality

23


https://en.wikipedia.org/wiki/Max%E2%80%93min_inequality

How to find the solution p* = d*? Use KKT Conditions

Strong duality implies that there exist x*, a*, 3" such that:

e x* is the solution to the primal and a*, 3" is the solution to the dual

o pf =d* = L(x*, a3

o x*, a*, 3" satisfy the KKT conditions (which in fact are necessary
and sufficient for optimality)

The Karush-Kuhn-Tucker (KKT) conditions are:

ML@ = 0. x* is a local extremum of the

e Stationarity:
Lagrangian L for fixed a*, 3".

o Feasibility: gi(x*) <0 and hi(x*) =0 (primal) and a} > 0 (dual)
for all /. All primal and dual constraints are satisfied.

e Complementary slackness: afgi(x*) = 0 for all i. Either the

Lagrange multiplier o is 0, or the corresponding constraint
gi(x*) < 0is tight (i.e., gi(x*) =0).

24



The Diet problem

Nutrients | Food 1 ($2) | Food 2 ($5) | Food 3 ($15)
Carbs 20 1 1

Protein 1 30 40

Vitamins | 1 10 5

To satisfy daily nutritional requirements we need at least

e 200 units of carbs
e 50 units of protein

e 40 units of vitamins

Primal problem: How do we minimize the cost of satisfying these

requirements?

25



The Diet problem

Nutrients | Food 1 ($2) | Food 2 ($5) | Food 3 ($15)
Carbs 20 1 1

Protein 1 30 40

Vitamins | 1 10 5

min 2x1 + bxo + 15x3

X1,%2,%3
s.t. —20x1 — x0 — x3 < —200
—x1 — 30x, — 40x3 < —50
—x1 — 10x2 — bxz < —40
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The Diet problem

Nutrients | Food 1 ($2) | Food 2 ($5) | Food 3 ($15)
Carbs 20 1 1

Protein 1 30 40

Vitamins | 1 10 5

min 2x1 + bxo + 15x3

X1,%2,%3
s.t. —20x1 — x0 — x3 < —200
—x1 — 30x, — 40x3 < —50
—x1 — 10x2 — bxz < —40

Primal Solution: x; =2 9.84, x, =~ 3, x3 =0
Dual Solution: a1 = 0.07, ap =0, a3 = 0.5
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The Diet problem

Nutrients | Food 1 ($2) | Food 2 ($5) | Food 3 ($15)
Carbs 20 1 1

Protein 1 30 40

Vitamins | 1 10 5

min 2x1 + bxo + 15x3

X1,%2,%3
s.t. —20x1 — x0 — x3 < —200
—x1 — 30x, — 40x3 < —50
—x1 — 10x2 — bxz < —40
Primal Solution: x; =2 9.84, x, =~ 3, x3 =0
Dual Solution: a1 = 0.07, ap =0, a3 = 0.5
ap = 0 means that protein requirement is easy to satisfy
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The Diet problem: Dual

Nutrients | Food 1 ($2) | Food 2 ($5) | Food 3 ($15)
Carbs 20 1 1

Protein 1 30 40

Vitamins | 1 10 5

A pharmacist wants to create a diet pill to satisfy the requirements and
maximize profit. «ay, ap, az are the shadow prices of the nutrients.

max 2001 + 50ap + 40ai3

Q1,002,003
st. 2001 +ax+ a3 <2
a1 + 30as + 103 < 5
ay + 40ap 4+ baz < 15

ay, o, a3 > 0

27



The Diet problem: Dual

Nutrients | Food 1 ($2) | Food 2 ($5) | Food 3 ($15)
Carbs 20 1 1

Protein 1 30 40

Vitamins | 1 10 5

A pharmacist wants to create a diet pill to satisfy the requirements and
maximize profit. «ay, ap, az are the shadow prices of the nutrients.

max 2001 + 50ap + 40ai3

a,a0,03
st. 2001 +ax+ a3 <2
a1 + 30as + 103 < 5
ay + 40ap 4+ baz < 15
ag,ap, a3 >0

Primal Solution: x; ~9.84, xo 3, x3 =0
Dual Solution: a; = 0.07, ap =0, a3 = 0.5 o7



e When working with constrained optimization problems with
inequality constraints, we can write down primal and dual problems.

e The dual solution is always a lower bound on the primal solution
(weak duality) and it is always convex

e The duality gap equals 0 under certain conditions (strong duality),
and in such cases we can either solve the primal or dual problem.

e Strong duality (and thus the KKT conditions) hold for the SVM
problem.

e See http://cs229.stanford.edu/notes/cs229-notes3.pdf for details

28
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Dual Derivation of SVMs
(optional)




Derivation of the dual

We will next derive the dual formulation for SVMs.

Recipe

1.

AR

Formulate the generalized Lagrangian function that incorporates the
constraints and introduces dual variables

Minimize the Lagrangian function over the primal variables
Substitute the primal variables for dual variables in the Lagrangian
Maximize the Lagrangian with respect to dual variables

Recover the solution (for the primal variables) from the dual
variables

29



Deriving the dual for SVM

Primal SVM
. 1,
min - Slwll; + Czn:é‘n
st. yalw'x,+b]>1-¢, ¥ n

£, >0, Vn

The constraints are equivalent to —¢, < 0 and
1- Yn[WTXn + b] =& <0.

Lagrangian
L(w, b, {&n}, {an}, {An}) = CZ& \Wllz ZAnfn

+ > an{l = yalw x, + b] — &}
under the constraints that «, > 0 and A\, > 0.

30



Minimizing the Lagrangian

Taking derivatives with respect to the primal variables

oL 0 (1
ow  ow (zllw% - Zany"WT"“> =W =) YnnXn =0

oL 0

%: %7204,,}/,,[):720[")/”:0
oL o
0n Oty

These equations link the primal variables and the dual variables and
provide new constraints on the dual variables:

w = Zynanxn
n
Zan}’n =0
n

C—XN,—a,=0

(C=X—an)ép=C—X,—a,=0

31



Rearrange the Lagrangian

1 5 -
L() - C;£n+ EHW‘Q 7;)\n£n+;an{1fyn[w X/7+b] 7£n}
where o, > 0 and A, > 0. We now know that w = ) y,cnx.

g({an}{An}) = L(w, b,{&n}, {an}, {An})
= Z(C — Qp — )\n)fn + % ‘ Zy”(\/zxn HS + Zan

gather terms with &, substitute for w

I
- Z QnYn <Z )/m“/nxm> Xn — (Z anyn> b
n n

m

again substitute for w
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Rearrange the Lagrangian

1 5 -
L() - C;£n+ EHW‘Q 72)\n£n+;an{1fyn[w X/7+b] 7£n}
where o, > 0 and A, > 0. We now know that w = ) y,cnx.

g({an}{An}) = L(w, b,{&n}, {an}, {An})
= Z(C — Qp — )\n)fn + % ‘ Zy”(\/zxn HS + Zan

gather terms with &, substitute for w

I
- Z QnYn <Z )/m“/nxm> Xn — (Z anyn> b
n n

m

again substitute for w
Then, set >~ an,y, =0and C — A\, — a, = 0 and simplify to get..
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Incorporate the constraints

Constraints from partial derivatives: > a,y, =0and C — A, —a, = 0.

({0}, D)) = Lw, b, (&0}, {aun}, TAn})
D (ST W IARE ) RSN N s

equal to 0!

T
- (Z%ﬂ’n) b_zanyn <Zymamxm> Xn
n n m
equal to 0!

1
= Z ap + 5” Zynanan% - Z anam)/m)/nx—rgxn
n n m,n

1
= Zan - 5 Zanam)/m)/nxlxn
n m,n

33



The dual problem

Maximizing the dual under the constraints
1
max  g({an}, {An}) = an - 5 > YmYnOmQnX pXn
n m,n

st. a,>0, Vn
Zoa,,yn:O
C—Xp—a,=0, Vn
An>0, Vn

We can simplify as the objective function does not depend on A,.
Specifically, we can combine the constraints involving A, resulting in the
following inequality constraint: «, < C:

C— A=, =0,1,20 <= \,=C—0a,>0

— a,<C

34



Dual formulation of SVM

Dual is also a convex quadratic program

1
T
m(sx § Qp — 5 E YmYnOmOinX . X
n

m,n

st. 0<a,<C, Vn

Zanyn =0

e There are N dual variables «,, one for each data point

e Independent of the size d of x: SVM scales better for
high-dimensional feature.

e May seem like a lot of optimization variables when N is large, but
many of the «,'s become zero. «, is non-zero only if the nt" point
is a support vector
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Advantages of SVM

We've seen that the geometric formulation of SVM is equivalent to
minimizing the empirical hinge loss. This explains why SVM:

Is less sensitive to outliers.
Maximizes distance of training data from the boundary
Generalizes well to many nonlinear models.

Only requires a subset of the training points.

A

Scales better with high-dimensional data.

The last thing left to consider is non-linear decision boundaries, or kernel
SVMs

36



Kernel SVM




Non-linear basis functions in SVM

e What if the data is not linearly separable?

e We can transform the feature vector x using non-linear basis
functions. For example,

e Replace x by ¢(x) in both the primal and dual SVM formulations

37



Primal and Dual SVM Formulations: Kernel Versions

Primal

1
SlwlE+cY ¢

st yow' p(x,) + b >1—&,, ¥V on
& >0, Vn
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Primal and Dual SVM Formulations: Kernel Versions

Primal - 1
min - Sllwl3+ an:é“n
st yow' p(x,) + b >1—&,, ¥V on
& >0, Vn
Dual

1
monXZ Qp — 5 Z}/mynamanqb(xm)—rd)(x”)

st. 0<a,<C, Vn

Zoz,,y,, =0
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Primal and Dual SVM Formulations: Kernel Versions

Primal 1
min - Sllwl3+ an:é“n
st yow' p(x,) + b >1—&,, ¥V on
& >0, Vn
Dual

1
monXZ Qp — 5 Z}/mynamanqb(xm)—rd)(x”)

st. 0<a,<C, Vn
> anyn=0

IMPORTANT POINT: In the dual problem, we only need ¢(x,)" ¢(x,).

38



Dual Kernel SVM

We replace the inner products ¢(x,) "' ¢(x,) with a kernel function

1
m;ix Z()én - 5 Z}/mynamank(xma X,,)
n m,n
st. 0<a,<C, Vn

Zan}/n =0
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Dual Kernel SVM

We replace the inner products ¢(x,) "' ¢(x,) with a kernel function

1
m;ix Z()én - 5 Z}/mynamank(xma X,,)
n m,n
st. 0<a,<C, Vn

Zan}/n =0

e k(xm,x,) is a scalar and it is independent of the dimension of the
feature vector ¢(x).

e k(xm,x,) roughly measures the similarity of x,,, and x,,.

e k(xm,x,) is a kernel function if it is symmetric and positive-definite
(k(x,x) > 0 for all x > 0).

39



Examples of popular kernel functions

We do not need to know the exact form of ¢(x), which lets us define

much more flexible nonlinearities.

e Dot product:

k(Xm,Xp) = x;x,,
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Examples of popular kernel functions

We do not need to know the exact form of ¢(x), which lets us define

much more flexible nonlinearities.

e Dot product:
k(Xms Xn) = X, x,

e Dot product with PD matrix Q:

k(Xm, %) = X, Qx,,

e Polynomial kernels:

k(Xm, %) = (1 + x4 x,)?, d €zt

e Radial basis function:
k(Xm,Xn) = exp (—7 [1Xm — an2) for some v > 0

and many more. 40



Test prediction

Learning w and b:

w = Z anYn¢(xn)

b=y,— WT(b(xn) =Yn— Zam}/mk(xmaxn)
m

But for test prediction on a new point x, do we need the form of ¢(x) in
order to find the sign of w ' ¢(x) + b?

41



Test prediction

Learning w and b:

w = Z anYn¢(xn)

b=y,— WT¢(xn) =Yn— Zam}/mk(xmaxn)
m

But for test prediction on a new point x, do we need the form of ¢(x) in
order to find the sign of w ' ¢(x) + b? Fortunately, no!

Test Prediction:

h(x) = SIGN(Z YnQtnk(Xp, X) + b)

n

At test time it suffices to know the kernel function! So we really do not

need to know ¢.
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

Dataset: N=200, '0: 0.5 '1: 0.5

-4

-6

Image Source: https:
//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

Here is the decision boundary with linear soft-margin SVM

SVM Decision Boundary, Linear Kernel (1.0 accuracy, C=1.0)

Image Source: https:

//wuw.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html i
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

What if the data is not linearly separable?

Dataset: N=800, '0': 0.71375 '1": 0.28625

Image Source: https:

//wuw.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html “
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

The linear decision boundary is pretty bad

SVM Decision Boundary accuracy=0.445 (Kernel=linear

Image Source: https:
//wuw.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

Use kernel ¢(x) = [x1, x2, X2 + x3] to transform the data in a 3D space

Data projected to R~2 (nonseparable)

Data in R~3 (separable)

¥ Label
joqe1Z

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

Then find the decision boundary. How? Solve the Dual problem

1
msz On — 5 Zmenaman¢(xm)T¢(X")

st. 0<a,<C, Vn

Zany,, =0

Then find w and b. Predict y = sign(w” ¢(x) + b).
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

Here is the resulting decision boundary

Data projected to R~2 (hyperplane projection shown)

Data in R~3 (separable w/ hyperplane)

2ae1Z
¥ Label

Image Source: https:

//wuw.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html "
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

In general, you don't need to concretely define ¢(x). In the dual problem
we can just use the kernel function k(xn,,X,). For cases where ¢(x) is
concretely defined, k(Xm,Xn) = ¢(Xm) T ¢(Xn).

1 T
m(i]x;an - 5 ;ym)/naman(b(xm) ¢(X")

st. 0<a,<C, Vn

Zan)/n =0
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

In general, you don't need to concretely define ¢(x). In the dual problem
we can just use the kernel function k(xn,,X,). For cases where ¢(x) is
concretely defined, k(Xm,Xn) = d(xm) T d(x5).

1
mo‘?xz Qp — 5 ZYmYnamank(xmv ym)
n m,n
st. 0<a,<C, Vn

Zan)/n =0
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Example of Kernel SVM

Given a dataset {(xp,y,) for n=1,2,..., N}, how do you classify it
using kernel SVM 7

Effect of the choice of kernel: Polynomial kernel (degree 4)

SVM Decision Boundary accuracy=1.0 (Kernel=poly
C=1.0 coef0=10.0 gamma=0.1 degree=4)
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Image Source: https:
//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xp,y,) forn=1,2,...

, N}, how do you classify it
using kernel SVM 7

Effect of the choice of kernel: Radial Basis Kernel

SVM Decision Boundary accuracy=1.0 (Kernel=rbf
C€=10.0 gamma=0.1)
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Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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You should know:

e Hinge loss function of SVM.
e How to derive the SVM dual.

e How to use the “kernel trick” in the dual SVM formulation to enable
kernel SVM.

e How to compute an SVM prediction.
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