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Midterm Information

Midterm will be on Wednesday, 2/26 in-class.

• Closed-book except for one double-sided letter-size handwritten page

of notes that you can prepare as you wish.

• We will provide formulas for relevant probability distributions.

• You will not need a calculator. Only pen/pencil and scratch paper

are allowed.

Will cover all topics presented through this Wednesday in class (SVM

and before).

• (1) point estimation/MLE/MAP, (2) linear regression, (3) naive

Bayes, (4) logistic regression, and (5) SVMs.

• This friday’s recitation will go over practice exam questions.
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Midterm: Concepts That You Should Know

This is a quick overview of the most important concepts/methods/models

that you should expect to see on the midterm.

• MLE/MAP: how to find the likelihood of one or more observations

given a system model, how to incorporate knowledge of a prior

distribution, how to optimize the likelihood, loss functions

• Linear regression: how to formulate the linear regression optimization

problem, how it relates to MLE/MAP, ridge regression, overfitting

and regularization, gradient descent, bias-variance trade-off

• Naive Bayes: Bayes’ rule, naive classification rule, why it is naive

• Logistic regression: how to formulate logistic regression, how it

relates to MLE, comparison to naive Bayes, sigmoid function,

softmax function, cross-entropy function

• SVMs: hinge loss formulation, max-margin formulation, dual of the

SVM problem, kernel functions
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Outline

1. Review of SVM Max Margin Formulation

2. A Dual View of SVMs (the short version)

3. Lagrange Duality and KKT conditions (optional)

4. Dual Derivation of SVMs (optional)

5. Kernel SVM

3



Review of SVM Max Margin

Formulation



Intuition: Where to put the decision boundary?

w·x+b=0

w·x+b=0

Idea: Find a decision boundary in the ’middle’ of the two classes that:

• Perfectly classifies the training data

• Is as far away from every training point as possible

Let us apply this intuition to build a classifier that MAXIMIZES THE

MARGIN between training points and the decision boundary
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Defining the Margin

Margin

Smallest distance between the hyperplane and all training points

margin(w , b) = min
n

yn[w>xn + b]

‖w‖2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2
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Rescaled Margin to Avoid Scaling Ambiguity

We can further constrain the problem by scaling (w , b) such that

min
n

yn[w>xn + b] = 1

We’ve fixed the numerator in the margin(w , b) equation, and we have:

margin(w , b) =
minn yn[w>xn + b]

‖w‖2
=

1

‖w‖2

Hence the points closest to the decision boundary are at distance 1
‖w‖2 !

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1
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SVM: max margin formulation for separable data

Assuming separable training data, we thus want to solve:

max
w ,b

1

‖w‖2︸ ︷︷ ︸
margin

such that yn[w>xn + b] ≥ 1, ∀ n︸ ︷︷ ︸
scaling of w , b

This is equivalent to

min
w ,b

1

2
‖w‖22

s.t. yn[w>xn + b] ≥ 1, ∀ n

Given our geometric intuition, SVM is called a max margin (or large

margin) classifier. The constraints are called large margin constraints.
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SVM for non-separable data

Constraints in separable setting

yn[w>xn + b] ≥ 1, ∀ n

Constraints in non-separable setting

Idea: modify our constraints to account for non-separability! Specifically,

we introduce slack variables ξn ≥ 0:

yn[w>xn + b] ≥ 1− ξn, ∀ n

• For “hard” training points, we can increase ξn until the above

inequalities are met

• What does it mean when ξn is very large?
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Soft-margin SVM formulation

We do not want ξn to grow too large, and we can control their size by

incorporating them into our optimization problem:

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

What is the role of C?

• User-defined hyperparameter

• Trades off between the two terms in our objective

• Same idea as the regularization term in ridge regression,
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How to solve this problem?

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

• This is a convex quadratic program: the objective function is

quadratic in w and linear in ξ and the constraints are linear

(inequality) constraints in w , b and ξn.

• We can solve the optimization problem using general-purpose

solvers, e.g., Matlab’s quadprog() function.
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A Dual View of SVMs (the short

version)



What is duality?

Duality is a way of transforming a constrained optimization

problem.

It tells us sometimes-useful information about the problem structure, and

can sometimes make the problem easier to solve.

• Dual problem is always convex–easy to solve.

• Primal and dual problems are not always equivalent.

• Dual variables tell us “how bad” constraints are.

The main point you should understand is that we will solve the dual SVM

problem in lieu of the max margin (primal) formulation
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Derivation of the dual

Here is a skeleton of how to derive the dual problem.

Recipe

1. Formulate the generalized Lagrangian function that incorporates the

constraints and introduces dual variables

2. Minimize the Lagrangian function over the primal variables

3. Substitute the primal variables for dual variables in the Lagrangian

4. Maximize the Lagrangian with respect to dual variables

5. Recover the solution (for the primal variables) from the dual

variables
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Deriving the dual for SVM

Primal SVM

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

The constraints are equivalent to the following canonical forms:

−ξn ≤ 0 and 1− yn[w>xn + b]− ξn ≤ 0

Lagrangian

L(w , b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn

+
∑
n

αn{1− yn[w>xn + b]− ξn}

under the constraints that αn ≥ 0 and λn ≥ 0.
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Deriving the dual of SVM

Lagrangian

L(w , b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn

+
∑
n

αn{1− yn[w>xn + b]− ξn}

under the constraints that αn ≥ 0 and λn ≥ 0.

• Primal variables: w , {ξn}, b; dual variables {λn}, {αn}

• Minimize the Lagrangian function over the primal variables by

setting ∂L
∂w = 0, ∂L

∂b = 0, and ∂L
∂ξn

= 0.

• Substitute the solutions to primal variables for dual variables in the

Lagrangian

• Maximize the Lagrangian with respect to dual variables

• After some further maths and simplifications, we have...
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Dual formulation of SVM

Dual is also a convex quadratic program

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnx>mxn

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• There are N dual variables αn, one for each data point

• Independent of the size d of x: SVM scales better for

high-dimensional feature.

• May seem like a lot of optimization variables when N is large, but

many of the αn’s become zero. αn is non-zero only if the nth point

is a support vector
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Why do many αn’s become zero?

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnx>mxn

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• By strong duality and KKT complementary slackness conditions, it

tells us:

αn{1− ξn − yn[w>xn + b]} = 0 ∀n

• This tells us that αn > 0 iff 1− ξn = yn[w>xn + b]

• If ξn = 0, then support vector is on the margin

• Otherwise, ξn > 0 means that the point is an outlier
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Visualizing the support vectors

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors (αn > 0) are highlighted by the dotted orange lines.

• ξn = 0 and 0 < αn < C when yn[w>xn + b] = 1.

• ξn > 0 and αn = 0 if yn[w>xn + b] < 1.
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Once we solve for αn’s, how to get w and b?

Recovering w

∂L

∂w
= 0→ w =

∑
n

αnynxn

Only depends on support vectors, i.e., points with αn > 0!

Recovering b

If 0 < αn < C and yn ∈ {−1, 1}:

yn[w>xn + b] = 1

b = yn −w>xn

b = yn −
∑
m

αmymx>mxn
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Lagrange Duality and KKT

conditions (optional)



Constrained Optimization


minx f (x)

s.t. gi (x) ≤ 0, ∀ i

hi (x) = 0, ∀ j

This is the ‘primal’ problem.

x

f(x)

Set of x that satisfy 
the constraints
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Constrained Optimization


minx f (x)

s.t. gi (x) ≤ 0, ∀ i

hi (x) = 0, ∀ j

This is the ‘primal’ problem. The generalized Lagrangian is defined as

follows:

L(x ,α,β) = f (x) +
∑
i

αigi (x) +
∑
j

βjhj(x)

Consider the following function:

θP(x) = max
α,β,αi≥0

L(x ,α,β)

• If x violates a primal constraint, θP(x) =∞;

otherwise θP(x) = f (x)

• Thus minx θP(x) = minx maxα,β,αi≥0 L(x ,α,β) has same solution

as the primal problem, which we denote as p∗
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Constrained Optimization


minx f (x)

s.t. gi (x) ≤ 0, ∀ i

hi (x) = 0, ∀ j

This is the ‘primal’ problem.

θP(x) = max
α,β,αi≥0

L(x ,α,β)

x

f(x)

Set of x that satisfy 
the constraints

max
↵>0,�

L(x, ↵, �) is equal to f(x) for the feasible 
x and infinity everywhere else
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Constrained Optimization – Inequality Constraints

Primal Problem

p∗ = min
x
θP(x) = min

x
max

α,β,αi≥0
L(x ,α,β)

Dual Problem

Consider the function:

θD(α,β) = min
x

L(x ,α,β)

d∗ = max
α,β,αi≥0

θD(α,β) = max
α,β,αi≥0

min
x

L(x ,α,β)

Relationship between primal and dual?

• p∗ ≥ d∗ (weak duality)

• ‘min max’ of any function is always greater than the ‘max min’

• https://en.wikipedia.org/wiki/Max%E2%80%93min_inequality
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How to find the solution p∗ = d∗? Use KKT Conditions

Strong duality implies that there exist x∗,α∗,β∗ such that:

• x∗ is the solution to the primal and α∗,β∗ is the solution to the dual

• p∗ = d∗ = L(x∗,α∗,β∗)
• x∗,α∗,β∗ satisfy the KKT conditions (which in fact are necessary

and sufficient for optimality)

The Karush-Kuhn-Tucker (KKT) conditions are:

• Stationarity: ∂L(x,α∗,β∗)
∂x |x∗ = 0. x∗ is a local extremum of the

Lagrangian L for fixed α∗,β∗.

• Feasibility: gi (x∗) ≤ 0 and hi (x∗) = 0 (primal) and α∗i ≥ 0 (dual)

for all i . All primal and dual constraints are satisfied.

• Complementary slackness: α∗i gi (x
∗) = 0 for all i . Either the

Lagrange multiplier α∗i is 0, or the corresponding constraint

gi (x∗) ≤ 0 is tight (i.e., gi (x∗) = 0).
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The Diet problem

Nutrients Food 1 ($2) Food 2 ($5) Food 3 ($15)

Carbs 20 1 1

Protein 1 30 40

Vitamins 1 10 5

To satisfy daily nutritional requirements we need at least

• 200 units of carbs

• 50 units of protein

• 40 units of vitamins

Primal problem: How do we minimize the cost of satisfying these

requirements?
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The Diet problem

Nutrients Food 1 ($2) Food 2 ($5) Food 3 ($15)

Carbs 20 1 1

Protein 1 30 40

Vitamins 1 10 5

min
x1,x2,x3

2x1 + 5x2 + 15x3

s.t. − 20x1 − x2 − x3 ≤ −200

− x1 − 30x2 − 40x3 ≤ −50

− x1 − 10x2 − 5x3 ≤ −40

Primal Solution: x1 ≈ 9.84, x2 ≈ 3, x3 = 0

Dual Solution: α1 = 0.07, α2 = 0, α3 = 0.5

α2 = 0 means that protein requirement is easy to satisfy
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The Diet problem: Dual

Nutrients Food 1 ($2) Food 2 ($5) Food 3 ($15)

Carbs 20 1 1

Protein 1 30 40

Vitamins 1 10 5

A pharmacist wants to create a diet pill to satisfy the requirements and

maximize profit. α1, α2, α3 are the shadow prices of the nutrients.

max
α1,α2,α3

200α1 + 50α2 + 40α3

s.t. 20α1 + α2 + α3 ≤ 2

α1 + 30α2 + 10α3 ≤ 5

α1 + 40α2 + 5α3 ≤ 15

α1, α2, α3 ≥ 0

Primal Solution: x1 ≈ 9.84, x2 ≈ 3, x3 = 0

Dual Solution: α1 = 0.07, α2 = 0, α3 = 0.5
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The Diet problem: Dual

Nutrients Food 1 ($2) Food 2 ($5) Food 3 ($15)
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Dual Solution: α1 = 0.07, α2 = 0, α3 = 0.5 27



Recap

• When working with constrained optimization problems with

inequality constraints, we can write down primal and dual problems.

• The dual solution is always a lower bound on the primal solution

(weak duality) and it is always convex

• The duality gap equals 0 under certain conditions (strong duality),

and in such cases we can either solve the primal or dual problem.

• Strong duality (and thus the KKT conditions) hold for the SVM

problem.

• See http://cs229.stanford.edu/notes/cs229-notes3.pdf for details
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Dual Derivation of SVMs

(optional)



Derivation of the dual

We will next derive the dual formulation for SVMs.

Recipe

1. Formulate the generalized Lagrangian function that incorporates the

constraints and introduces dual variables

2. Minimize the Lagrangian function over the primal variables

3. Substitute the primal variables for dual variables in the Lagrangian

4. Maximize the Lagrangian with respect to dual variables

5. Recover the solution (for the primal variables) from the dual

variables
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Deriving the dual for SVM

Primal SVM

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

The constraints are equivalent to −ξn ≤ 0 and

1− yn[w>xn + b]− ξn ≤ 0.

Lagrangian

L(w , b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn

+
∑
n

αn{1− yn[w>xn + b]− ξn}

under the constraints that αn ≥ 0 and λn ≥ 0.
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Minimizing the Lagrangian

Taking derivatives with respect to the primal variables

∂L

∂w
=

∂

∂w

(
1

2
‖w‖22 −

∑
n

αnynw>xn

)
= w −

∑
n

ynαnxn = 0

∂L

∂b
=

∂

∂b
−
∑
n

αnynb = −
∑
n

αnyn = 0

∂L

∂ξn
=

∂

∂ξn
(C − λn − αn)ξn = C − λn − αn = 0

These equations link the primal variables and the dual variables and

provide new constraints on the dual variables:

w =
∑
n

ynαnxn∑
n

αnyn = 0

C − λn − αn = 0
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Rearrange the Lagrangian

L(·) = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn +
∑
n

αn{1− yn[w>xn + b]− ξn}

where αn ≥ 0 and λn ≥ 0. We now know that w =
∑

n ynαnxn.

g({αn},{λn}) = L(w , b, {ξn}, {αn}, {λn})

=
∑
n

(C − αn − λn)ξn︸ ︷︷ ︸
gather terms with ξn

+
1

2
‖
∑
n

ynαnxn︸ ︷︷ ︸
substitute for w

‖22 +
∑
n

αn

−
∑
n

αnyn

(∑
m

ymαmxm

)>
︸ ︷︷ ︸
again substitute for w

xn −
(∑

n

αnyn

)
b

Then, set
∑

n αnyn = 0 and C − λn − αn = 0 and simplify to get..
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Incorporate the constraints

Constraints from partial derivatives:
∑

n αnyn = 0 and C − λn − αn = 0.

g({αn},{λn}) = L(w , b, {ξn}, {αn}, {λn})

=
∑
n

(C − αn − λn)︸ ︷︷ ︸
equal to 0!

ξn +
1

2
‖
∑
n

ynαnxn‖22 +
∑
n

αn

−
(∑

n

αnyn

)
︸ ︷︷ ︸

equal to 0!

b −
∑
n

αnyn

(∑
m

ymαmxm

)>
xn

=
∑
n

αn +
1

2
‖
∑
n

ynαnxn‖22 −
∑
m,n

αnαmymynx>mxn

=
∑
n

αn −
1

2

∑
m,n

αnαmymynx>mxn
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The dual problem

Maximizing the dual under the constraints

max
α

g({αn}, {λn}) =
∑
n

αn −
1

2

∑
m,n

ymynαmαnx>mxn

s.t. αn ≥ 0, ∀ n∑
n

αnyn = 0

C − λn − αn = 0, ∀ n

λn ≥ 0, ∀ n

We can simplify as the objective function does not depend on λn.

Specifically, we can combine the constraints involving λn resulting in the

following inequality constraint: αn ≤ C :

C − λn − αn = 0, λn ≥ 0 ⇐⇒ λn = C − αn ≥ 0

⇐⇒ αn ≤ C
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Dual formulation of SVM

Dual is also a convex quadratic program

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnx>mxn

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• There are N dual variables αn, one for each data point

• Independent of the size d of x: SVM scales better for

high-dimensional feature.

• May seem like a lot of optimization variables when N is large, but

many of the αn’s become zero. αn is non-zero only if the nth point

is a support vector
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Advantages of SVM

We’ve seen that the geometric formulation of SVM is equivalent to

minimizing the empirical hinge loss. This explains why SVM:

1. Is less sensitive to outliers.

2. Maximizes distance of training data from the boundary

3. Generalizes well to many nonlinear models.

4. Only requires a subset of the training points.

5. Scales better with high-dimensional data.

The last thing left to consider is non-linear decision boundaries, or kernel

SVMs
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Kernel SVM



Non-linear basis functions in SVM

• What if the data is not linearly separable?

• We can transform the feature vector x using non-linear basis

functions. For example,

φ(x) =



1

x1
x2
x1x2
x21
x22


• Replace x by φ(x) in both the primal and dual SVM formulations
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Primal and Dual SVM Formulations: Kernel Versions

Primal

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>φ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Dual

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)>φ(xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

IMPORTANT POINT: In the dual problem, we only need φ(xm)>φ(xn).
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Dual Kernel SVM

We replace the inner products φ(xm)>φ(xn) with a kernel function

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm, xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• k(xm, xn) is a scalar and it is independent of the dimension of the

feature vector φ(x).

• k(xm, xn) roughly measures the similarity of xm and xn.

• k(xm, xn) is a kernel function if it is symmetric and positive-definite

(k(x, x) > 0 for all x > 0).
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Dual Kernel SVM

We replace the inner products φ(xm)>φ(xn) with a kernel function

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm, xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• k(xm, xn) is a scalar and it is independent of the dimension of the
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• k(xm, xn) is a kernel function if it is symmetric and positive-definite

(k(x, x) > 0 for all x > 0).
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Examples of popular kernel functions

We do not need to know the exact form of φ(x), which lets us define

much more flexible nonlinearities.

• Dot product:

k(xm, xn) = x>mxn

• Dot product with PD matrix Q:

k(xm, xn) = x>mQxn

• Polynomial kernels:

k(xm, xn) = (1 + x>mxn)d , d ∈ Z+

• Radial basis function:

k(xm, xn) = exp
(
−γ ‖xm − xn‖2

)
for some γ > 0

and many more.
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Examples of popular kernel functions

We do not need to know the exact form of φ(x), which lets us define

much more flexible nonlinearities.

• Dot product:

k(xm, xn) = x>mxn

• Dot product with PD matrix Q:

k(xm, xn) = x>mQxn

• Polynomial kernels:

k(xm, xn) = (1 + x>mxn)d , d ∈ Z+

• Radial basis function:

k(xm, xn) = exp
(
−γ ‖xm − xn‖2

)
for some γ > 0

and many more. 40



Test prediction

Learning w and b:

w =
∑
n

αnynφ(xn)

b = yn −w>φ(xn) = yn −
∑
m

αmymk(xm, xn)

But for test prediction on a new point x, do we need the form of φ(x) in

order to find the sign of w>φ(x) + b?

Fortunately, no!

Test Prediction:

h(x) = sign(
∑
n

ynαnk(xn, x) + b)

At test time it suffices to know the kernel function! So we really do not

need to know φ.
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Here is the decision boundary with linear soft-margin SVM

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

What if the data is not linearly separable?

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

The linear decision boundary is pretty bad

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Use kernel φ(x) = [x1, x2, x
2
1 + x22 ] to transform the data in a 3D space

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Then find the decision boundary. How? Solve the Dual problem

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)>φ(xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

Then find w and b. Predict y = sign(wTφ(x) + b).
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Here is the resulting decision boundary

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

In general, you don’t need to concretely define φ(x). In the dual problem

we can just use the kernel function k(xm, xn). For cases where φ(x) is

concretely defined, k(xm, xn) = φ(xm)Tφ(xn).

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)>φ(xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0
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Example of Kernel SVM
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Effect of the choice of kernel: Polynomial kernel (degree 4)

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Effect of the choice of kernel: Radial Basis Kernel

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Summary

You should know:

• Hinge loss function of SVM.

• How to derive the SVM dual.

• How to use the “kernel trick” in the dual SVM formulation to enable

kernel SVM.

• How to compute an SVM prediction.
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