
18-661 Introduction to Machine Learning

Support Vector Machines (SVM) – I

Spring 2020

ECE – Carnegie Mellon University

Midterm Information

Midterm will be on Wednesday, 2/26 in-class.

• Closed-book except for one double-sided letter-size handwritten page

of notes that you can prepare as you wish.

• We will provide formulas for relevant probability distributions.

• You will not need a calculator. Only pen/pencil and scratch paper

are allowed.

Will cover all topics presented through next Wednesday in class (SVM

and before).

• (1) point estimation/MLE/MAP, (2) linear regression, (3) naive

Bayes, (4) logistic regression, and (5) SVMs.

• Next friday’s recitation will go over practice questions.

• Understand all homework questions and derivations in

lecture/recitation.

1

Outline

1. Review of Non-linear classification boundary

2. Review of Multi-class Logistic Regression

3. Support Vector Machines (SVM): Intuition

4. SVM: Max Margin Formulation

5. SVM: Hinge Loss Formulation

6. Equivalence of These Two Formulations

2

Review of Non-linear

classification boundary

How to handle more complex decision boundaries?

x1

x 2

• This data is not linearly separable in the original feature space

• Use non-linear basis functions to add more features, hopefully it

becomes linearly separable in the “augmented” space.

3

How to handle more complex decision boundaries?

x1

x 2

• This data is not linearly separable in the original feature space

• Use non-linear basis functions to add more features, hopefully it

becomes linearly separable in the “augmented” space.

3

Adding polynomial features

• New feature vector is x = [1, x1, x2, x
2
1 , x

2
2]

• Pr(y = 1|x) = σ(w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2)

• If w = [−1, 0, 0, 1, 1], the boundary is −1 + x21 + x22 = 0

• If −1 + x2
1 + x2

2 ≥ 0 declare spam

• If −1 + x2
1 + x2

2 < 0 declare ham

x1

 -1 + x1
2 + x2

2 = 0
x 2

4

Solution to Overfitting: Regularization

• Add regularization term to be cross entropy loss function

E(w) = −
∑
n

{yn log σ(w>xn)+(1−yn) log[1−σ(w>xn)]}+ 1

2
λ‖w‖22︸ ︷︷ ︸

regularization

• Perform gradient descent on this regularized function

• Often, we do NOT regularize the bias term w0

x1

x 2

5

Solution to Overfitting: Regularization

• Add regularization term to be cross entropy loss function

E(w) = −
∑
n

{yn log σ(w>xn)+(1−yn) log[1−σ(w>xn)]}+ 1

2
λ‖w‖22︸ ︷︷ ︸

regularization

• Perform gradient descent on this regularized function

• Often, we do NOT regularize the bias term w0

x1

x 2

5

Outline

1. Review of Non-linear classification boundary

2. Review of Multi-class Logistic Regression

3. Support Vector Machines (SVM): Intuition

4. SVM: Max Margin Formulation

5. SVM: Hinge Loss Formulation

6. Equivalence of These Two Formulations

6

Review of Multi-class Logistic

Regression

Three approaches

• One-versus-all

• One-versus-one

• Multinomial regression

x1

x 2

7

The One-versus-Rest or One-Versus-All Approach

• For each class Ck , change the problem into binary classification

1. Relabel training data with label Ck , into positive (or ‘1’)

2. Relabel all the rest data into negative (or ‘0’)

• Repeat this multiple times: Train K binary classifiers, using logistic

regression to differentiate the two classes each time

x1

x 2

8

The One-versus-Rest or One-Versus-All Approach

• For each class Ck , change the problem into binary classification

1. Relabel training data with label Ck , into positive (or ‘1’)

2. Relabel all the rest data into negative (or ‘0’)

• Repeat this multiple times: Train K binary classifiers, using logistic

regression to differentiate the two classes each time

x1

x 2

9

The One-versus-Rest or One-Versus-All Approach

• For each class Ck , change the problem into binary classification

1. Relabel training data with label Ck , into positive (or ‘1’)

2. Relabel all the rest data into negative (or ‘0’)

• Repeat this multiple times: Train K binary classifiers, using logistic

regression to differentiate the two classes each time

x1

x 2

w1
T x = 0

10

The One-versus-Rest or One-Versus-All Approach

How to combine these linear decision boundaries?

• Use the confidence estimates Pr(y = C1|x) = σ(w>1 x),

. . . Pr(y = CK |x) = σ(w>K x)

• Declare class C∗k that maximizes

k∗ = arg max
k=1,...,K

Pr(y = Ck |x) = σ(w>k x)

x1

x 2

+ Pr(Square) = 0.6

+

Pr(Circle) = 0.75

Pr(Triangle) = 0.2

11

The One-Versus-One Approach

• For each pair of classes Ck and Ck′ , change the problem into binary

classification

1. Relabel training data with label Ck , into positive (or ‘1’)

2. Relabel training data with label Ck′ into negative (or ‘0’)

3. Disregard all other data

x1

x 2

12

The One-Versus-One Approach

• How many binary classifiers for K classes?

K (K − 1)/2

• How to combine their outputs?

• Given x , count the K (K − 1)/2 votes from outputs of all binary

classifiers and declare the winner as the predicted class.

• Use confidence scores to resolve ties

x1

x 2

13

The One-Versus-One Approach

• How many binary classifiers for K classes?

K (K − 1)/2

• How to combine their outputs?

• Given x , count the K (K − 1)/2 votes from outputs of all binary

classifiers and declare the winner as the predicted class.

• Use confidence scores to resolve ties

x1

x 2

13

The One-Versus-One Approach

• How many binary classifiers for K classes? K (K − 1)/2

• How to combine their outputs?

• Given x , count the K (K − 1)/2 votes from outputs of all binary

classifiers and declare the winner as the predicted class.

• Use confidence scores to resolve ties

x1

x 2

13

The One-Versus-One Approach

• How many binary classifiers for K classes? K (K − 1)/2

• How to combine their outputs?

• Given x , count the K (K − 1)/2 votes from outputs of all binary

classifiers and declare the winner as the predicted class.

• Use confidence scores to resolve ties

x1

x 2

13

The One-Versus-One Approach

• How many binary classifiers for K classes? K (K − 1)/2

• How to combine their outputs?

• Given x , count the K (K − 1)/2 votes from outputs of all binary

classifiers and declare the winner as the predicted class.

• Use confidence scores to resolve ties

x1

x 2

13

Multinomial logistic regression (Perceptron)

• Model: For each class Ck , we have a parameter vector w k and

model the posterior probability as:

p(Ck |x) =
ew>

k x∑
k′ e

w>
k′x

← This is called softmax function

• Decision boundary / testing: Assign x with the label that is the

maximum of posterior:

arg maxk P(Ck |x)→ arg maxk w>k x .

14

Parameter estimation

Discriminative approach: maximize conditional likelihood

logP(D) =
∑
n

logP(yn|xn)

We will change yn to yn = [yn1 yn2 · · · ynK]>, a K -dimensional vector

using 1-of-K encoding.

ynk =

{
1 if yn = k

0 otherwise

Ex: if yn = 2, then, yn = [0 1 0 0 · · · 0]>.

P(yn|xn) =
K∏

k=1

P(Ck |xn)ynk

= P(C1|xn)yn1P(C2|xn)yn2 · · ·P(CK |xn)ynK

therefore, only the term corresponding to ynk = 1 will survive.

15

Parameter estimation

Discriminative approach: maximize conditional likelihood

logP(D) =
∑
n

logP(yn|xn)

We will change yn to yn = [yn1 yn2 · · · ynK]>, a K -dimensional vector

using 1-of-K encoding.

ynk =

{
1 if yn = k

0 otherwise

Ex: if yn = 2, then, yn = [0 1 0 0 · · · 0]>.

P(yn|xn) =
K∏

k=1

P(Ck |xn)ynk

= P(C1|xn)yn1P(C2|xn)yn2 · · ·P(CK |xn)ynK

therefore, only the term corresponding to ynk = 1 will survive.

15

Parameter estimation

Discriminative approach: maximize conditional likelihood

logP(D) =
∑
n

logP(yn|xn)

We will change yn to yn = [yn1 yn2 · · · ynK]>, a K -dimensional vector

using 1-of-K encoding.

ynk =

{
1 if yn = k

0 otherwise

Ex: if yn = 2, then, yn = [0 1 0 0 · · · 0]>.

P(yn|xn) =
K∏

k=1

P(Ck |xn)ynk

= P(C1|xn)yn1P(C2|xn)yn2 · · ·P(CK |xn)ynK

therefore, only the term corresponding to ynk = 1 will survive.

15

Cross-entropy error function

∑
n

logP(yn|xn) =
∑
n

log
K∏

k=1

P(Ck |xn)ynk =
∑
n

∑
k

ynk logP(Ck |xn)

Definition: negative log likelihood

E(w 1,w 2, . . . ,wK) = −
∑
n

∑
k

ynk logP(Ck |xn)

= −
∑
n

∑
k

ynk log

(
ew>

k xn∑
k′ e

w>
k′xn

)

Properties

• Convex, therefore unique global optimum

• Optimization requires numerical procedures, analogous to those used

for binary logistic regression

16

Cross-entropy error function

∑
n

logP(yn|xn) =
∑
n

log
K∏

k=1

P(Ck |xn)ynk =
∑
n

∑
k

ynk logP(Ck |xn)

Definition: negative log likelihood

E(w 1,w 2, . . . ,wK) = −
∑
n

∑
k

ynk logP(Ck |xn)

= −
∑
n

∑
k

ynk log

(
ew>

k xn∑
k′ e

w>
k′xn

)
Properties

• Convex, therefore unique global optimum

• Optimization requires numerical procedures, analogous to those used

for binary logistic regression

16

Outline

1. Review of Non-linear classification boundary

2. Review of Multi-class Logistic Regression

3. Support Vector Machines (SVM): Intuition

4. SVM: Max Margin Formulation

5. SVM: Hinge Loss Formulation

6. Equivalence of These Two Formulations

17

Support Vector Machines

(SVM): Intuition

Why do we need SVM?

Alternative to Logistic Regression and Naive Bayes.

• Logistic regression and naive Bayes train over the whole dataset.

• These can require a lot of memory in high-dimensional settings.

• SVM can give a better and more efficient solution

• SVM is one of the most powerful and commonly used ML algorithms

18

Binary logistic regression

• We only need to know if p(x) > 0.5 or < 0.5.

• We don’t (always) need to know how far x is from this boundary.

How can we use this insight to improve the classification algorithm?

• What if we just looked at the boundary?

• Maybe then we could ignore some of the samples?

19

Advantages of SVM

We will see later that SVM:

1. Is less sensitive to outliers.

2. Maximizes distance of training points from the boundary

3. Scales better with high-dimensional data.

4. Only requires a subset of the training points.

5. Generalizes well to many nonlinear models.

20

Outline

1. Review of Non-linear classification boundary

2. Review of Multi-class Logistic Regression

3. Support Vector Machines (SVM): Intuition

4. SVM: Max Margin Formulation

5. SVM: Hinge Loss Formulation

6. Equivalence of These Two Formulations

21

SVM: Max Margin Formulation

Binary Classification: Finding a Linear Decision Boundary

HH�

H��

• Input features x .

• Decision boundary is a hyperplane H : w>x + b = 0.

• All x satisfying w>x + b < 0 lie on the same side of the line and are

in the same “class.”

22

Intuition: Where to put the decision boundary?

• Consider a separable training dataset (e.g., with two features)

• There are an infinite number of decision boundaries

H : w>x + b = 0!

HH�

H��

• Which one should we pick?

23

Intuition: Where to put the decision boundary?

w·x+b=0

w·x+b=0

Idea: Find a decision boundary in the ’middle’ of the two classes that:

• Perfectly classifies the training data

• Is as far away from every training point as possible

Let us apply this intuition to build a classifier that MAXIMIZES THE

MARGIN between training points and the decision boundary

24

Intuition: Where to put the decision boundary?

w·x+b=0

w·x+b=0

Idea: Find a decision boundary in the ’middle’ of the two classes that:

• Perfectly classifies the training data

• Is as far away from every training point as possible

Let us apply this intuition to build a classifier that MAXIMIZES THE

MARGIN between training points and the decision boundary
24

First, we need to review some vector geometry

What is a hyperplane?

w·x+b=0

w·x+b=0

• General equation is w>x + b = 0

• Divides the space in half, i.e., w>x + b > 0 and w>x + b < 0

• A hyperplane is a line in 2D and a plane in 3D

• w ∈ Rd is a non-zero normal vector
25

Vector Norms and Inner Products

• Given two vectors w and x, what is their inner product?

• Inner Product w>x = w1x1 + w2x2 + · · ·+ wdxd

0

w

x
θ

• Inner Product w>x is also equal to ||w ||||x || cos θ

• w>w = ||w ||2
• If w and x are perpendicular θ = π/2, and thus the inner product is

zero

26

Vector Norms and Inner Products

• Given two vectors w and x, what is their inner product?

• Inner Product w>x = w1x1 + w2x2 + · · ·+ wdxd

0

w

x
θ

• Inner Product w>x is also equal to ||w ||||x || cos θ

• w>w = ||w ||2
• If w and x are perpendicular θ = π/2, and thus the inner product is

zero

26

Vector Norms and Inner Products

• Given two vectors w and x, what is their inner product?

• Inner Product w>x = w1x1 + w2x2 + · · ·+ wdxd

0

w

x
θ

• Inner Product w>x is also equal to ||w ||||x || cos θ

• w>w = ||w ||2
• If w and x are perpendicular θ = π/2, and thus the inner product is

zero

26

Vector Norms and Inner Products

• Given two vectors w and x, what is their inner product?

• Inner Product w>x = w1x1 + w2x2 + · · ·+ wdxd

0

w

x
θ

• Inner Product w>x is also equal to ||w ||||x || cos θ

• w>w = ||w ||2
• If w and x are perpendicular θ = π/2, and thus the inner product is

zero

26

Normal vector of a hyperplane

a

w�x + b = 0

a0

w�

p

q

Vector w is normal to the hyperplane. Why?

• If p and q are both on the line, then w>p + b = w>q + b = 0.

• Then w>(p − q) = w>p −w>q = −b − (−b) = 0

• p − q is an arbitrary vector parallel to the line, thus w is orthogonal

• w∗ = w
||w || is the unit normal vector

27

Normal vector of a hyperplane

a

w�x + b = 0

a0

w�

p

q

Vector w is normal to the hyperplane. Why?

• If p and q are both on the line, then w>p + b = w>q + b = 0.

• Then w>(p − q) = w>p −w>q = −b − (−b) = 0

• p − q is an arbitrary vector parallel to the line, thus w is orthogonal

• w∗ = w
||w || is the unit normal vector

27

Normal vector of a hyperplane

a

w�x + b = 0

a0

w�

p

q

Vector w is normal to the hyperplane. Why?

• If p and q are both on the line, then w>p + b = w>q + b = 0.

• Then w>(p − q) = w>p −w>q = −b − (−b) = 0

• p − q is an arbitrary vector parallel to the line, thus w is orthogonal

• w∗ = w
||w || is the unit normal vector

27

Normal vector of a hyperplane

a

w�x + b = 0

a0

w�

p

q

Vector w is normal to the hyperplane. Why?

• If p and q are both on the line, then w>p + b = w>q + b = 0.

• Then w>(p − q) = w>p −w>q = −b − (−b) = 0

• p − q is an arbitrary vector parallel to the line, thus w is orthogonal

• w∗ = w
||w || is the unit normal vector

27

Distance from a Hyperplane

a

w�x + b = 0

a0

w�

p

q

How to find the distance from a to the hyperplane?

• We want to find distance between a and line in the direction of w∗.

• If we define point a0 on the line, then this distance corresponds to

length of a − a0 in direction of w∗, which equals w∗>(a − a0)

• We know w>a0 = −b since w>a0 + b = 0.

• Then the distance equals 1
||w || (w

>a + b)
28

Distance from a point to decision boundary

The unsigned distance from a point x to decision boundary (hyperplane)

H is

dH(x) =
|w>x + b|
‖w‖2

We can remove the absolute value | · | by exploiting the fact that the

decision boundary classifies every point in the training dataset correctly.

Namely, (w>x + b) and x ’s label y must have the same sign, so:

dH(x) =
y [w>x + b]

‖w‖2

Notation change from Logistic Regression

• Change of notation y = 0→ y = −1

• Separate the bias term b from w

29

Distance from a point to decision boundary

The unsigned distance from a point x to decision boundary (hyperplane)

H is

dH(x) =
|w>x + b|
‖w‖2

We can remove the absolute value | · | by exploiting the fact that the

decision boundary classifies every point in the training dataset correctly.

Namely, (w>x + b) and x ’s label y must have the same sign, so:

dH(x) =
y [w>x + b]

‖w‖2

Notation change from Logistic Regression

• Change of notation y = 0→ y = −1

• Separate the bias term b from w

29

Defining the Margin

Margin

Smallest distance between the hyperplane and all training points

margin(w , b) = min
n

yn[w>xn + b]

‖w‖2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

Notation change from Logistic Regression

• Change of notation y = 0→ y = −1

• Separate the bias term b from w
30

Optimizing the Margin

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How should we pick (w , b) based on its margin?

We want a decision boundary that is as far away from all training points

as possible, so we to maximize the margin!

max
w ,b

(
min
n

yn[w>xn + b]

‖w‖2

)
= max

w ,b

(
1

‖w‖2
min
n

yn[w>xn + b]

)

Only involves points near the boundary (more on this later).

31

Scale of w

Margin

Smallest distance between the hyperplane and all training points

margin(w , b) = min
n

yn[w>xn + b]

‖w‖2

Consider three hyperplanes

(w , b) (2w , 2b) (.5w , .5b)

Which one has the largest margin?

• The margin doesn’t change if we scale (w , b) by a constant c

• w>x + b = 0 and (cw)>x + (cb) = 0: same decision boundary!

• Can we further constrain the problem so as to get a unique solution

(w , b)?

32

Rescaled Margin

We can further constrain the problem by scaling (w , b) such that

min
n

yn[w>xn + b] = 1

We’ve fixed the numerator in the margin(w , b) equation, and we have:

margin(w , b) =
minn yn[w>xn + b]

‖w‖2
=

1

‖w‖2

Hence the points closest to the decision boundary are at distance 1
‖w‖2

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

33

SVM: max margin formulation for separable data

Assuming separable training data, we thus want to solve:

max
w ,b

1

‖w‖2︸ ︷︷ ︸
margin

such that yn[w>xn + b] ≥ 1, ∀ n︸ ︷︷ ︸
scaling of w , b

This is equivalent to

min
w ,b

1

2
‖w‖22

s.t. yn[w>xn + b] ≥ 1, ∀ n

Given our geometric intuition, SVM is called a max margin (or large

margin) classifier. The constraints are called large margin constraints.

34

Support vectors – a first look

SVM formulation for separable data

min
w ,b

1

2
‖w‖22

s.t. yn[w>xn + b] ≥ 1, ∀ n

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

• “=”: yn[w>xn + b] = 1, these training data are “support vectors”

• “>”: yn[w>xn + b] > 1, removing them do not affect the optimal

solution.
35

SVM for non-separable data

SVM formulation for separable data

min
w ,b

1

2
‖w‖22

s.t. yn[w>xn + b] ≥ 1, ∀ n

Non-separable setting

In practice our training data will not be separable. What issues arise with

the optimization problem above when data is not separable?

• For every w there exists a training point x i such that

yi [w>x i + b] ≤ 0

• There is no feasible (w , b) as at least one of our constraints is

violated!

36

SVM for non-separable data

Constraints in separable setting

yn[w>xn + b] ≥ 1, ∀ n

Constraints in non-separable setting

Idea: modify our constraints to account for non-separability! Specifically,

we introduce slack variables ξn ≥ 0:

yn[w>xn + b] ≥ 1− ξn, ∀ n

• For “hard” training points, we can increase ξn until the above

inequalities are met

• What does it mean when ξn is very large?

37

Soft-margin SVM formulation

We do not want ξn to grow too large, and we can control their size by

incorporating them into our optimization problem:

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

What is the role of C?

• User-defined hyperparameter

• Trades off between the two terms in our objective

• Same idea as the regularization term in ridge regression, i.e., C = 1
λ

38

How to solve this problem?

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

• This is a convex quadratic program: the objective function is

quadratic in w and linear in ξ and the constraints are linear

(inequality) constraints in w , b and ξn.

• We can solve the optimization problem using general-purpose

solvers, e.g., Matlab’s quadprog() function.

39

Meaning of “support vectors” in SVMs

• The SVM solution is only determined by a subset of the training

samples (as we will see in more detail in the next lecture)

• These samples are called support vectors

• All other training points do not affect the optimal solution, i.e., if we

remove the other points and construct another SVM classifier on the

reduced dataset, the optimal solution will be the same

These properties allow us to be more efficient than logistic regression or

naive Bayes.

40

Visualization of how training data points are categorized

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors are highlighted by the dotted orange lines

Recall the constraints yn[w>xn + b] ≥ 1− ξn.

41

Visualization of how training data points are categorized

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Recall the constraints yn[w>xn + b] ≥ 1− ξn. Three types of support

vectors

• ξn = 0: The point is on the boundary

• 0 < ξn ≤ 1: On the correct side, but inside the margin

• ξn > 1: On the wrong side of the boundary

42

Example of SVM

0 x1

x2

1 2 3 4 5

y = 1y = -1

What will be the decision boundary learnt by solving the SVM

optimization problem?

43

Example of SVM

0 x1

x2

1 2 3 4 5

y = 1y = -1

What will be the decision boundary learnt by solving the SVM

optimization problem?

43

Example of SVM

0 x1

x2

1 2 3 4 5

x1 -2.5 = 0 y = 1y = -1

Margin = 1.5; the decision boundary has w = [1, 0]>, and b = −2.5.

Is this the right scaling of w and b? We need the support vectors to

satisfy to yn(w>xn + b) = 1.

Not quite. For example, for xn = [1, 0]>, we have

yn(w>xn + b) = (−1)[1− 2.5] = 1.5.

44

Example of SVM

0 x1

x2

1 2 3 4 5

x1 -2.5 = 0 y = 1y = -1

Margin = 1.5; the decision boundary has w = [1, 0]>, and b = −2.5.

Is this the right scaling of w and b? We need the support vectors to

satisfy to yn(w>xn + b) = 1.

Not quite. For example, for xn = [1, 0]>, we have

yn(w>xn + b) = (−1)[1− 2.5] = 1.5.

44

Example of SVM

0 x1

x2

1 2 3 4 5

x1 -2.5 = 0 y = 1y = -1

Margin = 1.5; the decision boundary has w = [1, 0]>, and b = −2.5.

Is this the right scaling of w and b? We need the support vectors to

satisfy to yn(w>xn + b) = 1.

Not quite. For example, for xn = [1, 0]>, we have

yn(w>xn + b) = (−1)[1− 2.5] = 1.5.

44

Example of SVM: scaling

0 x1

x2

1 2 3 4 5

y = 1y = -1 (2x1-5)/3 = 0

Thus, our optimization problem will re-scale w and b to get this equation

for the same decision boundary

Margin = 1.5; the decision boundary has w = [2/3, 0]>, and b = −5/3.

For example, for xn = [1, 0]>, we have

yn(w>xn + b) = (−1)[2/3− 5/3] = 1.

45

Example of SVM: support vectors

0 x1

x2

1 2 3 4 5

y = 1y = -1 (2x1-5)/3 = 0

The solution to our optimization problem will be the same to the

reduced dataset containing all the support vectors.

46

Example of SVM: support vectors

0 x11 2 3 4 5

y = 1y = -1 (2x1-5)/3 = 0

There can be many more data than the number of support vectors (so we

can train on a smaller dataset).

47

Example of SVM: resilience to outliers

0

x2

1 2 3 4 5

y = 1y = -1

• Still linearly separable, but one of the orange dots is an “outlier”.

48

Example of SVM: resilience to outliers

0 x1

x2

1 2 3 4 5

y = 1y = -1

• Naively applying the hard-margin SVM will result in a classifier with

small margin.

• So, better to use the soft-margin formulation.

49

Example of SVM: resilience to outliers

0 x1

x2

1 2 3 4 5

y = 1y = -1

• Naively applying the hard-margin SVM will result in a classifier with

small margin.

• So, better to use the soft-margin formulation.

49

Example of SVM: resilience to outliers

0 x1

x2

1 2 3 4 5

y = 1y = -1

0 x1

x2

1 2 3 4 5

y = 1y = -1

⇠n

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

• C =∞ corresponds to the hard-margin SVM;

• Due to the flexibility in C , SVM is also less sensitive to outliers.

50

Example of SVM

0 x1

x2

1 2 3 4 5

y = 1y = -1

• Similar reasons apply to the case when the data is not linearly

separable.

• The value of C determines how much the boundary will shift:

trade-off of accuracy and robustness (sensitivity to outliers).

51

Outline

1. Review of Non-linear classification boundary

2. Review of Multi-class Logistic Regression

3. Support Vector Machines (SVM): Intuition

4. SVM: Max Margin Formulation

5. SVM: Hinge Loss Formulation

6. Equivalence of These Two Formulations

52

SVM: Hinge Loss Formulation

Logistic Regression Loss: Illustration

L(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

• Loss grows approx. linearly as we move away from the boundary

• Alternative: Hinge Loss Function

53

Hinge Loss: Illustration

L(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

• Loss grows linearly as we move away from the boundary

• No penalty if a point is more than 1 unit from the boundary

• Makes the search for the boundary easier (as we will see later)

54

Hinge Loss: Mathematical Expression

L(w) = −
∑
n

max(0, 1− yn(w>xn + b))

• Change of notation y = 0→ y = −1

• Separate the bias term b from w

• Makes the mathematical expression more compact
55

Hinge Loss: Mathematical Expression

Definition

Assume y ∈ {−1, 1} and the decision rule is h(x) = sign(w>x) with

f (x) = w>x + b,

`hinge(f (x), y) =

{
0 if yf (x) ≥ 1

1− yf (x) otherwise

56

Hinge loss

Definition

Assume y ∈ {−1, 1} and the decision rule is h(x) = sign(f (x)) with

f (x) = w>x + b,

`hinge(f (x), y) =

{
0 if yf (x) ≥ 1

1− yf (x) otherwise

Intuition

• No penalty if raw output, f (x), has same sign and is far enough

from decision boundary (i.e., if ‘margin’ is large enough)

• Otherwise pay a growing penalty, between 0 and 1 if signs match,

and greater than one otherwise

Convenient shorthand

`hinge(f (x), y) = max(0, 1− yf (x)) = (1− yf (x))+
57

Optimization Problem of support vector machines (SVM)

Minimizing the total hinge loss on all the training data

min
w ,b

∑
n

max(0, 1− yn[w>xn + b])︸ ︷︷ ︸
hinge loss for sample n

+
λ

2
‖w‖22︸ ︷︷ ︸

regularizer

Analogous to regularized least squares, as we balance between two terms

(the loss and the regularizer).

• Can solve using gradient descent to get the optimal w and b

• Gradient of the first term will be either 0, xn or −xn depending on

yn and w>xn + b

• Much easier to compute than in logistic regression, where we need

to compute the sigmoid function σ(w>xn + b) in each iteration

58

Optimization Problem of support vector machines (SVM)

Minimizing the total hinge loss on all the training data

min
w ,b

∑
n

max(0, 1− yn[w>xn + b])︸ ︷︷ ︸
hinge loss for sample n

+
λ

2
‖w‖22︸ ︷︷ ︸

regularizer

Analogous to regularized least squares, as we balance between two terms

(the loss and the regularizer).

• Can solve using gradient descent to get the optimal w and b

• Gradient of the first term will be either 0, xn or −xn depending on

yn and w>xn + b

• Much easier to compute than in logistic regression, where we need

to compute the sigmoid function σ(w>xn + b) in each iteration

58

Optimization Problem of support vector machines (SVM)

Minimizing the total hinge loss on all the training data

min
w ,b

∑
n

max(0, 1− yn[w>xn + b])︸ ︷︷ ︸
hinge loss for sample n

+
λ

2
‖w‖22︸ ︷︷ ︸

regularizer

Analogous to regularized least squares, as we balance between two terms

(the loss and the regularizer).

• Can solve using gradient descent to get the optimal w and b

• Gradient of the first term will be either 0, xn or −xn depending on

yn and w>xn + b

• Much easier to compute than in logistic regression, where we need

to compute the sigmoid function σ(w>xn + b) in each iteration

58

Optimization Problem of support vector machines (SVM)

Minimizing the total hinge loss on all the training data

min
w ,b

∑
n

max(0, 1− yn[w>xn + b])︸ ︷︷ ︸
hinge loss for sample n

+
λ

2
‖w‖22︸ ︷︷ ︸

regularizer

Analogous to regularized least squares, as we balance between two terms

(the loss and the regularizer).

• Can solve using gradient descent to get the optimal w and b

• Gradient of the first term will be either 0, xn or −xn depending on

yn and w>xn + b

• Much easier to compute than in logistic regression, where we need

to compute the sigmoid function σ(w>xn + b) in each iteration

58

Outline

1. Review of Non-linear classification boundary

2. Review of Multi-class Logistic Regression

3. Support Vector Machines (SVM): Intuition

4. SVM: Max Margin Formulation

5. SVM: Hinge Loss Formulation

6. Equivalence of These Two Formulations

59

Equivalence of These Two

Formulations

Recovering our previous SVM formulation

Rewrite the geometric formulation as the hinge loss formulation:

min
w ,b

∑
n

max(0, 1− yn[w>xn + b]) +
λ

2
‖w‖22

Here’s the geometric formulation again:

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn s.t. yn[w>xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Now since yn[w>xn + b] ≥ 1− ξn ⇐⇒ ξn ≥ 1− yn[w>xn + b]:

min
w ,b,ξ

C
∑
n

ξn +
1

2
‖w‖22 s.t. max(0, 1− yn[w>xn + b]) ≤ ξn, ∀ n

Now since the ξn should always be as small as possible, we obtain:

min
w ,b

C
∑
n

max(0, 1− yn[w>xn + b]) +
1

2
‖w‖22

60

Recovering our previous SVM formulation

Rewrite the geometric formulation as the hinge loss formulation:

min
w ,b

∑
n

max(0, 1− yn[w>xn + b]) +
λ

2
‖w‖22

Here’s the geometric formulation again:

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn s.t. yn[w>xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Now since yn[w>xn + b] ≥ 1− ξn ⇐⇒ ξn ≥ 1− yn[w>xn + b]:

min
w ,b,ξ

C
∑
n

ξn +
1

2
‖w‖22 s.t. max(0, 1− yn[w>xn + b]) ≤ ξn, ∀ n

Now since the ξn should always be as small as possible, we obtain:

min
w ,b

C
∑
n

max(0, 1− yn[w>xn + b]) +
1

2
‖w‖22

60

Recovering our previous SVM formulation

Rewrite the geometric formulation as the hinge loss formulation:

min
w ,b

∑
n

max(0, 1− yn[w>xn + b]) +
λ

2
‖w‖22

Here’s the geometric formulation again:

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn s.t. yn[w>xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Now since yn[w>xn + b] ≥ 1− ξn ⇐⇒ ξn ≥ 1− yn[w>xn + b]:

min
w ,b,ξ

C
∑
n

ξn +
1

2
‖w‖22 s.t. max(0, 1− yn[w>xn + b]) ≤ ξn, ∀ n

Now since the ξn should always be as small as possible, we obtain:

min
w ,b

C
∑
n

max(0, 1− yn[w>xn + b]) +
1

2
‖w‖22

60

Recovering our previous SVM formulation

Rewrite the geometric formulation as the hinge loss formulation:

min
w ,b

∑
n

max(0, 1− yn[w>xn + b]) +
λ

2
‖w‖22

Here’s the geometric formulation again:

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn s.t. yn[w>xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Now since yn[w>xn + b] ≥ 1− ξn ⇐⇒ ξn ≥ 1− yn[w>xn + b]:

min
w ,b,ξ

C
∑
n

ξn +
1

2
‖w‖22 s.t. max(0, 1− yn[w>xn + b]) ≤ ξn, ∀ n

Now since the ξn should always be as small as possible, we obtain:

min
w ,b

C
∑
n

max(0, 1− yn[w>xn + b]) +
1

2
‖w‖22

60

Recovering our previous SVM formulation

Rewrite the geometric formulation as the hinge loss formulation:

min
w ,b

∑
n

max(0, 1− yn[w>xn + b]) +
λ

2
‖w‖22

Here’s the geometric formulation again:

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn s.t. yn[w>xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Now since yn[w>xn + b] ≥ 1− ξn ⇐⇒ ξn ≥ 1− yn[w>xn + b]:

min
w ,b,ξ

C
∑
n

ξn +
1

2
‖w‖22 s.t. max(0, 1− yn[w>xn + b]) ≤ ξn, ∀ n

Now since the ξn should always be as small as possible, we obtain:

min
w ,b

C
∑
n

max(0, 1− yn[w>xn + b]) +
1

2
‖w‖22

60

Advantages of SVM

We’ve seen that the geometric formulation of SVM is equivalent to

minimizing the empirical hinge loss. This explains why SVM:

1. Is less sensitive to outliers.

2. Maximizes distance of training data from the boundary

3. Generalizes well to many nonlinear models.

4. Only requires a subset of the training points.

5. Scales better with high-dimensional data.

We will need to use duality to show the next three properties.

61

	Review of Non-linear classification boundary
	Review of Multi-class Logistic Regression
	Support Vector Machines (SVM): Intuition
	SVM: Max Margin Formulation
	SVM: Hinge Loss Formulation
	Equivalence of These Two Formulations

