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e Expressing outputs z in terms of inputs x is called
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e Express inputs u;j to the hidden layer in terms of x
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How do you perform inference using a trained neural network?

Apply gj to u;

e Expressing outputs z in terms of inputs x is called
forward-propagation.
o Express inputs u; to the hidden layer in terms of x: u; = Y. wyx; + b;
e Express outputs y; of the hidden layer in terms of x:
i = &(22; wixi + by)
e Express inputs to the final layer in terms of x
e Express outputs zx of the final layer in terms of x:

z = g(>_; wikyj + bx)



Review: Training a Neural
Network: Backpropagatiopn



Learning Parameters

How to learn the parameters?

e Choose the right loss function
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min Z(f(xn) — t,)



Learning Parameters

How to learn the parameters?

e Choose the right loss function

e Regression: Least-square loss (in class)

min Z(f(x,,) — t,)?
o Classification: cross-entropy loss (in the homework)
min — Z Z tok log fi(xn) + (1 — tak) log(1 — fi(xn))
n k

e Hard optimization problem because f (the output of the neural
network) is a complicated function of x,



Learning Parameters

How to learn the parameters?

e Choose the right loss function

e Regression: Least-square loss (in class)

min Z(f(xn) — t,)

o Classification: cross-entropy loss (in the homework)

min — Z Z tok log fi(xn) + (1 — tak) log(1 — fi(xn))

e Hard optimization problem because f (the output of the neural
network) is a complicated function of x,
e Solution: Use Stochastic gradient descent (SGD)
e Many optimization tricks are applied to speed-up SGD convergence



Stochastic gradient descent

e Randomly pick a data point (X, t,)

e Compute the gradient using only this data point, for example,

- O[f (xn) — tn]z
n ow

e Update the parameters: w < w — nA

A

e lterate the process until some (pre-specified) stopping criteria



Updating the parameter values

Back-propagate the error. Given parameters w, b:

e Step 1: Forward-propagate to find z, in terms of the input (the
“feed-forward signals™).

e Step 2: Calculate output error £ by comparing the predicted output
z) to its true value ty.

e Step 3: Back-propagate £ by weighting it by the gradients of the
associated activation functions and the Weights in previous layers.
e Step 4: Calculate the gradients % and 2 for the parameters w, b

at each layer based on the backpropagated error signal and the
feedforward signals from the inputs.

e Step 5: Update the parameters using the calculated gradients
W w — ndE b+ b— 77 Where 7) is the step size.



lllustrative example

Apply gj to u;

e w;i: weights connecting node / in layer (¢ — 1) to node j in layer £.
e bj, by: bias for nodes j and k.

e uj, ug: inputs to nodes j and k (where uj = bj + >, xjwjj).

e gj, gk activation function for node j (applied to ;) and node k.
o y; = gj(uj), zx = gk(uk): output/activation of nodes j and k.

e t,: target value for node k in the output layer.



lllustrative example (steps 1 and 2)

Apply gj to u;

e Step 1: Forward-propagate for each output z.

2 = gk(uk) = gk(bu+ Y yjwin) = gr(be+ D _ gi(bj+ > xiwiy)wix)
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lllustrative example (steps 1 and 2)

Apply gj to u;

e Step 1: Forward-propagate for each output z.

2 = gk(uk) = gk(bu+ Y yjwin) = gr(be+ D _ gi(bj+ > xiwiy)wix)

J J !

e Step 2: Find the error. Let's assume that the error function is the
sum of the squared differences between the target values t;, and the
network output z: E = 33, (2 — ti)?.



lllustrative example (step 3, output layer)

Step 3: Backpropagate the error. Let's start at the output layer with
weight wj, recalling that E = %EkeK(Zk — te)?, ux = by + Ej Wik y;:
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lllustrative example (step 3, output layer)

Step 3: Backpropagate the error. Let's start at the output layer with
weight wj, recalling that E = %EkeK(Zk — te)?, ux = by + Ej Wik y;:

OE OE 6zk 8uk (’)zk (’)uk

S = e (g gk

Wik 8Zk 8uk 5'ij duk aWJk
0
= (2 = t)gi(un) 5 —uk = (26 = t)gi(un)y; = owy;
jk

where 0x = (zi — ti)g}(ux) is called the error in uy.



lllustrative example (step 3, hidden layer)

Step 3 (cont’d): Now let's consider wj; in the hidden layer, recalling
uj = b+ 32 xiwy, ue = b+ 32, gi(u)wik, zi = gi(uk):

OJuyi Oyj Ouj Ow;j

duj dW,'j

aW;j

0E OE Juy dy; Ou; Z5kW'k dy; Ju;
T = = /j
keK keK



lllustrative example (step 3, hidden layer)

Step 3 (cont’d): Now let's consider wj; in the hidden layer, recalling
uj = b+ 32 xiwy, ue = b+ 32, gi(u)wik, zi = gi(uk):

OE OE Ouy dy; Ou; Z dy; Ju;
= Ok Wik
keK

ow; Pt duk y; duj Ow;j duj Ow;;
= Z 5ijkgj/(uJ')X,‘ = 5J'X,'
keK

where we substituted 6; = g/(u;) >_ ek (2k — tk)gy(uk)wjk, the error in u;.



lllustrative example (steps 3 and 4)

e Step 3 (cont'd): We similarly find that gTEk = Ok, g—g = 9.
e Step 4: Calculate the gradients. We have found that
OE

ow;j Wik

0E
= §;x; and e = OkYyj-
j
where 6, = (zx — ti)gy(uk). 6; = &;(Uj) X rer(Zk — ti)gr(u) Wik
Now since we know the z, y;, xi, ux and u; for a given set of
parameter values w, b, we can use these expressions to calculate the

gradients at each iteration and update them.
10



lllustrative example (steps 4 and 5)

e Step 4: Calculate the gradients. We have found that

OE OE
— =0;x; and —— = dxy;.
5'W,'j j%i an aij K
where 6, = (zx — t) gy (uk), 6; = g/ (Uj) D ke (2k — t)gr (UK ) Wik
e Step 5: Update the weights and biases with learning rate 7. For
example
0E

Wik < Wik — N
J J naW,'j

E
—n5— and w; <+ w;
Owi 1



High-level Procedure: Can be Used with More Hidden Layers

Apply gj to u;

2
IGodes in the hidden layer

Final Layer

e Error in each of its outputs is zx — tx.
e Error in input uy to the final layer is 8, = g (uk)(zx — t)

Hidden Layer
e Error in output y; is D, Ok Wik-

e Error in the input u; of the hidden layer is ; = g/(u;) >_ ek Ik Wik
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High-level Procedure: Can be Used with More Hidden Layers

Apply gj to u;

2
IGodes in the hidden layer

Final Layer

e Error in each of its outputs is zx — tx.
e Error in input uy to the final layer is 8, = g (uk)(zx — t)

Hidden Layer

e Error in output y; is D, Ok Wik-
e Error in the input u; of the hidden layer is ; = g/(u;) >_ ek Ik Wik

The gradient w.r.t. wj is x;d;.
12



Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

Apply g; to uj

~
IGodes in the hidden layer

Forward-Propagation

e Represent the weights between layers / — 1 and / as a matrix W()
and biases as a row vector b(")
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Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

Apply g; to uj

~
IGodes in the hidden layer

Forward-Propagation

e Represent the weights between layers / — 1 and / as a matrix W()

and biases as a row vector b/

e Outputs of layer / — 1 are in a row vector y("1. Then we have
u() = y(=DwO 4 p?),

e Outputs of layer / are in the row vector y() = g(u())).
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Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

Apply g; to u;

A
IGodes in the hidden layer

Back-Propagation

e For each layer / find A(), the vector of errors in u() in terms of the
final error

e Update weights W() using A()
e Recursively find AU~ in terms A()

14



Optimizing SGD Parameters for
Faster Convergence



Mini-batch SGD

e Recall the empirical risk loss function that we considered for the
backpropagation discussion

%1
E=) 5(f(xi) 1)

n=1
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Mini-batch SGD

e Recall the empirical risk loss function that we considered for the
backpropagation discussion

N
1
E= Z 5(f(xn) —t,)?
n=1
e For large training datasets (large N), then computing gradients with
respect to each datapoint is expensive. For example, for the last
year, the batch gradients are

N

OE _ S (o 1)
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Mini-batch SGD

e Recall the empirical risk loss function that we considered for the

backpropagation discussion

N
1
E= Z 5(f(xn) —t,)?
n=1
e For large training datasets (large N), then computing gradients with
respect to each datapoint is expensive. For example, for the last
year, the batch gradients are

N

U T

aij

n=1

e Therefore we use stochastic gradient descent (SGD), where we
choose a random data point x, and use E = 1(f(x,) — t,)? instead

of the entire sum

15



Mini-batch SGD

e Mini-batch SGD is in between these two extremes
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Mini-batch SGD

e Mini-batch SGD is in between these two extremes

e In each iteration, we choose a set S of m samples from the N
training samples and use

E=>)" %(f(xn) — tn)?

nesS

for backpropagation

e Small m saves per-iteration computing cost, but increases noise in
the gradients and yields worse error convergence

e |arge m reduces gradient noise and typically gives better error
convergence, but increases computing cost per iteration

17



How to Choose Mini-batch size m

e Small training datasets — use batch gradient descent m = N

e Large training datasets — typical m are 64, 128, 256 ... whatever fits
in the CPU/GPU memory

e Mini-batch size is another hyperparameter that you have to tune

38 la—a Stochastic

36f| — Mini-batch

3.41| e—e Batch
01342

3.0

2.8

2.6

2.4

2.5 3.0 3.5 4.0 4.5

b9

Image source: https://github.com/buomsoo-kim/
Machine-learning-toolkits-with-python
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Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

Apply gj to u;

/)Uj*>©—>}/j

A
IGodes in the hidden layer

Forward-Propagation

e Represent the weights between layers / — 1 and / as a matrix W()
and biases as a vector b(!) (dimensions do NOT depend on m)
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Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

Apply gj to u;

/)Uj*>©—>}/j

A
IGodes in the hidden layer

Forward-Propagation

e Represent the weights between layers / — 1 and / as a matrix W()
and biases as a vector b(!) (dimensions do NOT depend on m)

e Qutputs of layer / — 1 are arranged in an m X n;_; size matrix
YU=1) where each row is the layer / — 1 outputs for one sample.

19



Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

Apply gj to u;

A
IGodes in the hidden layer

Forward-Propagation (contd)

e Then we have m x n; matrix U) = YU=DWO) 1 [1,1,..., l]Tb(/)
of layer / inputs, where [1,1,...,1]" is a column of m ones
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Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

Apply gj to u;

A
IGodes in the hidden layer

Forward-Propagation (contd)

e Then we have m x n; matrix U) = YU=DWO) 1 [1,1,..., l]Tb(/)
of layer / inputs, where [1,1,...,1]" is a column of m ones

e Outputs of layer [ is an m x n(;y matrix Y = g(U).

20



Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

Apply gj to uj
5 U — Yi

A
Ngdes in the hidden layer

Back-Propagation

e For each layer / find the m x n(;y size matrix AU of errors in UM in
terms of the final error E
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Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

Apply gj to uj
5 U — Yi

A
Ngdes in the hidden layer

Back-Propagation

e For each layer / find the m x n(;y size matrix AU of errors in UM in
terms of the final error E

e Update weights W() using A()

e Recursively find AU~ in terms A()

21



e SGD Update Rule

0E
Tow® =
e lLarge 1); Faster convergence, but higher error floor (the flat portion

WD) (0 W — v E(w)

of each curve)

e Small 7): Slow convergence, but lower error floor (the blue curve will
eventually go below the red curve)

e To get the best of both worlds, decay 7 over time

loss

low learning rate

high learning rate

good learning rate

epoch 22


https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

How to Decay the Learning Rate?

A common way to decay 7

e Start with some learning rate, say n = 0.1

60

error (Yo)

1] e I A ]
—ResNet-34 34-layer
ZGO 10

30 40 50
iter. (led)

Image Source: http://www.bdhammel .com/learning-rates/
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How to Decay the Learning Rate?

A common way to decay 7

e Start with some learning rate, say n = 0.1
e Monitor the training loss and wait till it flattens

60

error (Yo)
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How to Decay the Learning Rate?

A common way to decay 7

e Start with some learning rate, say n = 0.1
e Monitor the training loss and wait till it flattens
e Reduce 7 by a fixed factor, say 5. New n = 0.02.
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How to Decay the Learning Rate?

A common way to decay 7

e Start with some learning rate, say n = 0.1

e Monitor the training loss and wait till it flattens

e Reduce 7 by a fixed factor, say 5. New n = 0.02.

e Reduce again by the same factor when curve flattens

60

error (Yo)

ResNet-18 Mo AN A,
—ResNet-34 34-layer
21

200 10

0 30 40 50
iter. (led)

Image Source: http://www.bdhammel .com/learning-rates/
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How to Decay the Learning Rate?

An alternate approach — AdaGrad [Duchi et al 2011]

e Divide the learning rate n by the square root of the the sum of
squares of gradients until that time

24
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An alternate approach — AdaGrad [Duchi et al 2011]

e Divide the learning rate n by the square root of the the sum of
squares of gradients until that time

e This scaling factor is different for each parameter depending upon

the corresponding gradients

wt =y 1 VE(w,(t))
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How to Decay the Learning Rate?

An alternate approach — AdaGrad [Duchi et al 2011]

e Divide the learning rate n by the square root of the the sum of
squares of gradients until that time

e This scaling factor is different for each parameter depending upon

the corresponding gradients
wt =y 1 VE(w,(t))

Ve +e

where g,-(t) = Z,t(:l(VE(w,(-k)))2.
e In a modified version AdaDelta, you take the sum of square gradients
over a fixed size sliding window instead of all times from 1 to t

24



Momentum — Accelerating SGD Convergence

e Remember the update to w in the previous iteration, that is,

w(t) —_ w(tfl)

= &
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e Remember the update to w in the previous iteration, that is,

w(t) —_ w(tfl)

e Add it to the next iteration’s update, that is,

wlttl) — (6 HVE(W(t)) + O[(W(t) _ W(t—l))

e « is called the momentum, and it is typically set to around 0.9 in
neural network training
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Momentum — Accelerating SGD Convergence

e Remember the update to w in the previous iteration, that is,
w(t) — w(tfl)

e Add it to the next iteration’s update, that is,

wlttl) — (6 HVE(W(t)) + O[(W(t) _ W(t—l))

e « is called the momentum, and it is typically set to around 0.9 in
neural network training

e If current speed is fast, then we move even faster in the next
iteration

25



Universality and Depth




Architecture Design

First layer: h() = g(W® x + p()
Second layer: h® = g@(W®' p(1) 4 p2))
e How do we decide depth, width?

In theory how many layers suffice?

26



Universality

e Theoretical result [Cybenko, 1989]: 2-layer net with linear output
with some squashing non-linearity in hidden units can approximate
any continuous function over compact domain to arbitrary accuracy
(given enough hidden units!)
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Universality

e Theoretical result [Cybenko, 1989]: 2-layer net with linear output
with some squashing non-linearity in hidden units can approximate
any continuous function over compact domain to arbitrary accuracy
(given enough hidden units!)

e Implication: Regardless of function we are trying to learn, a one
hidden layer neural network can represent this function.

e But not guaranteed that our training algorithm will be able to learn
that function

e Gives no guidance on how large the network will be (exponential size
in worst case)

27



Advantages of Depth

Figure 1: Goodfellow et al., 2014

e Increasing the depth of a neural network generally improves test
accuracy

28



Advantages of Depth

T T T 1 1
= g *—e 3, convolution:
g +—+ 3, fully connected
2 95 V¥ 11, convolutional [{
g oo} i
g 93} 4 .
S 92t .
91 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters x10%

Figure 2: Goodfellow et at., 2014

e Control experiments show that other increases to model size don’t
yield the same effect.

e These are a lot of parameters...

29



Preventing Overfitting

e Approach 1 Get more data
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Preventing Overfitting

e Approach 1 Get more data

e Always best if possible!
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Preventing Overfitting

e Approach 1 Get more data

e Always best if possible!
e If no natural ones, use data augmentation

Approach 2 Regularization

e Add regularizer term to the objective function
e Need to incorporate this in back-propagation

Approach 3 Choose network structure with the right capacity:
e enough to fit the true regularities.
e Not enough to also fit spurious regularities (if they are weaker).
e Requires parameter tuning, hard to guess the right size.

Approach 4 Average many different models

e Models with different forms to encourage diversity
e Train on different subsets of data
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Dropout

e Consider a fully connected
neural net with H nodes in
hidden layers.

Present with Always
probability p present

(a) At training time () At test time
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e Consider a fully connected
neural net with H nodes in
hidden layers.

e Each time we present a training

example (for each iteration of
SGD), we randomly omit each
hidden unit with probability 0.5.

e So we are randomly sampling
from 2H different architectures.

e All architectures share weights.

31



Dropout as preventing co-adaptation

e If a hidden unit knows which
other hidden units are present,
it can co-adapt to them on the
training data.

w w
Present with Always
probability 7 prosent

(a) At training time () At test time
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Dropout as preventing co-adaptation

e If a hidden unit knows which
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it can co-adapt to them on the
training data.

e But complex co-adaptations
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Dropout as preventing co-adaptation

e If a hidden unit knows which
other hidden units are present,
it can co-adapt to them on the
training data.

e But complex co-adaptations

are likely to go wrong on new

test data.
e Big, complex conspiracies are . . - .
probability p present

not robust. 0 At Eminng time (4) Attt

e Dropout as orthogonalization
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Dropout as form of model averaging

e We sample from 2" models. So only a few of the models ever get
trained, and they only get one training example.
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Dropout as form of model averaging

e We sample from 2" models. So only a few of the models ever get
trained, and they only get one training example.
e The sharing of the weights means that every model is very strongly
regularized.
e It's a much better regularizer than L2 or L1 penalties that pull the
weights towards zero.
e Note that it's hard to generalize dropout to other types of ML
models, unlike L2 or L1 penalties.
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What do we do at test time?

e We could sample many different architectures and take the
geometric mean of their output distributions.
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e We could sample many different architectures and take the
geometric mean of their output distributions.

e It better to use all of the hidden units, but to halve their outgoing
weights.
e This exactly computes the geometric mean of the predictions of all
2" models (why?).
e This is not exactly the same as averaging all the separate dropped
out models, but it's a pretty good approximation, and it's fast.
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What do we do at test time?

e We could sample many different architectures and take the
geometric mean of their output distributions.

e It better to use all of the hidden units, but to halve their outgoing
weights.

e This exactly computes the geometric mean of the predictions of all
2" models (why?).

e This is not exactly the same as averaging all the separate dropped
out models, but it's a pretty good approximation, and it's fast.

e Alternatively, run the stochastic model (i.e., the different
architectures) several times on the same input.

e This gives us an idea of the uncertainty in the answer.
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Some dropout tips

e Dropout lowers your capacity

e Increase network size by n/p where n is number of hidden units in
original, p is probability of dropout
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Some dropout tips

e Dropout lowers your capacity
e Increase network size by n/p where n is number of hidden units in
original, p is probability of dropout
e Dropout slows down error convergence
e Increase learning rate by 10 to 100
e Or increase momentum (e.g. from 0.9 to 0.99)
e These can cause large weight growths, use weight regularization
e May require more iterations to converge
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Deep Neural Networks (DNNs)




Basic idea behind DNNs

Architecturally, a big neural network (with a lot of variants)

e in depth: 4-5 layers are commonly (Google LeNet uses more than 20)
e in width: each layer might have a few thousand hidden units

e the number of parameters: hundreds of millions, even billions
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Basic idea behind DNNs

Architecturally, a big neural network (with a lot of variants)

e in depth: 4-5 layers are commonly (Google LeNet uses more than 20)
e in width: each layer might have a few thousand hidden units

e the number of parameters: hundreds of millions, even billions
Algorithmically, many new things, including;:

e Pre-training: do not do error-backprogation right away

e layer-wise greedy: train one layer at a time
Computing

e Requires fast computations and coping with a lot of data

e Ex: fast Graphics Processing Unit (GPUs) are almost indispensable
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Deep Convolutional Networks

e Deep supervised neural networks are generally too difficult to train
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Deep Convolutional Networks

e Deep supervised neural networks are generally too difficult to train

One notable exception: Convolutional neural networks (CNN)

Convolutional nets were inspired by the visual system's structure

They typically have more than five layers, a number of layers which
makes fully-connected neural networks almost impossible to train
properly when initialized randomly.
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Deep Convolutional Networks

e Compared to standard feedforward neural networks with
similarly-sized layer
e CNNs have much fewer connections and parameters
e and so they are easier to train
e while their theoretically-best performance is likely to be only slightly

WOrse.
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Deep Convolutional Networks

e Compared to standard feedforward neural networks with
similarly-sized layer
e CNNs have much fewer connections and parameters
e and so they are easier to train
e while their theoretically-best performance is likely to be only slightly
Worse.
e Usually applied to image datasets (where convolutions have a long

history).

LeNet 5
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning

Applied to Document Recognition, Proceedings of the IFEE,
86(11):2278-2324, November 1998
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Convolution

e Continuous functions:

Convolution

(rre))= [ f(e(e-r)dr A

N -
- / F(t - r)g(r)dr
—0 fxg
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4
gxf
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Convolution

e Continuous functions: .
Convolution

oo [ roge-ner T
/ t—T dr
00 fxg

e Discrete functions: A1 A
.
(fxg)ln] = Z fmlg[n — m] -
o gxf
_ S R« U
— Z fln— m]g[m] J:Lm irNa
m=—oo N
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Convolution

e If discrete g has support on -M,...,M:

(f = g)ln] = Z fln — mlg[m]

M
Where g[m] is the kernel
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Convolution

e If discrete g has support on -M,...,M:

(f = g)ln] = Z fln — mlg[m]

M
Where g[m] is the kernel
e Product of polynomials

[1,2] % [3,2,5] = (x +2) * (3x* + 2x + 5) = 3x* + 8x* + 9x + 10
[1x3+42%x0,1x24+2x3,1x5+2x2,1x04+2x5]=]3,8,9,10]

Where [1,2] is the kernel of convolution
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Convolution

e If discrete g has support on -M,...,M:

(f = g)ln] = Z fln — mlg[m]

M
Where g[m] is the kernel
e Product of polynomials
[1,2] % [3,2,5] = (x +2) * (3x* + 2x + 5) = 3x* + 8x* + 9x + 10
[1x3+42%x0,1x24+2x3,1x5+2x2,1x04+2x5]=]3,8,9,10]

Where [1,2] is the kernel of convolution

aln] b[n) c[n] = a[n] * b[n]
2 2 2
1 1 1 :[ ﬂ‘z
TTT fo T ls
e 4 g m e 4 6 7 e 4 6 n
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2-Dimensional Convolution

o0

fixylxgboyl= > > flm,m] glx—n,y—n)]

n=—0o0 Np=—00

https://graphics.stanford.edu/courses/cs178/applets/convolution.html

Filter

Ol’lgina| 0.00 | 0.00 | -2.00  0.00 | 0.00




Convolutional Network Layers

Convolve subsets of an image with a small filter.

e Each pixel in the output image is a weighted sum of the filter and a
subset of the input.
e Learn the values in the filter (these are your parameters, or weights).

(-1x3)+(0x0)+(1x 1)+
(2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

A=\ Ko b - Vo)

\e\elole\e\ ~\el o)

A= Xo LA - Yoo\

A
0
L—
3
|
6
|
o
|
6
|_—
4
| —
6
| —

Convolution filter
(Sobel Gx)
Destination pixel

Y

(AN

AN VLA

A

ANV
AN AN AN
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LeNet 5, LeCun 1998

C3: f. maps 16@10x10
et ecé Jecturo maps S4:. maps 16@5x5
3232 S2:f. maps.

Full connection Gaussian connections
& i C Full i

e Input: 32 x 32 pixel image. Largest character is 20 x 20 (All
important info should be in the center of the receptive field of the
highest level feature detectors)
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LeNet 5, LeCun 1998

C3: f. maps 16@10x10
et C1: feature maps S4: . maps 16@5x5
6@28x28
3232 $2: 1. maps.

Full connection Gaussian connections
G i = Full i

e Input: 32 x 32 pixel image. Largest character is 20 x 20 (All
important info should be in the center of the receptive field of the
highest level feature detectors)

e Cx: Convolutional layer (C1,C3,C5)

e Sx: Sub-sample layer (52,54)

e Fx: Fully connected layer (F6)

e Black and White pixel values are normalized:

Eg. White=—0.1, Black=—1.175 (Mean of pixels = 0, Standard
deviation of pixels = 1)
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LeNet 5, Layer C1

C1: fe C3: f. maps 16@10x10
jeature maps. S4:f. maps 16@5x5
INPUT

3232 6@28x28 52 mape

Full connection Gaussian connections
& i C Full i

C1: Convolutional layer with 6 feature maps of size 28X28 C1¥(k = 1..6)
Each unit of C1 has 5x5 receptive field in the input layer.
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LeNet 5, Layer C1

C3:f. maps 16@10x10
INPUT géz'?,"z”e" maps S4: . maps 16@5x5
32,32 S2:f. maps.

Full connection Gaussian connections
& i C Full i

C1: Convolutional layer with 6 feature maps of size 28X28 C1¥(k = 1..6)
Each unit of C1 has 5x5 receptive field in the input layer.

e Topological structure
e Sparse connections

e Shared weights

(5%5+1) %6 =156 parameters to learn
Connections: 28 % 28 % (5 %5 + 1) 6 = 122304
If it was fully connected, we had (32*%32+1)*(28*28)*6 parameters
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LeNet 5, Layer S2

C3:f maps 16@10x10
NPUT éfgz'ﬁ".é'g""““‘ S4: . maps 16@5x5
3232 S2:f maps.

Full connection Gaussian connections
C c Full i

S2: Sub-sampling layer with 6 feature maps of size 14 x 14
2 x 2 non-overlapping receptive fields in C1

1
525 = tanh(W]{( Z C1§i75,2j7t + W2k)

s,t=0

Layer S2: 6*¥2=12 trainable parameters
Connections: 14 %14 % (2% 2+ 1) x 6 = 5880
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LeNet 5, Layer S2

C3:f. maps 16@10x10
INPUT c1 Zlﬁeén.éremaas 54: 1. maps 16@5x5
32132 se

Full connection Gaussian connections
C i [~ i Full i

S2: Sub-sampling layer with 6 feature maps of size 14 x 14
2 x 2 non-overlapping receptive fields in C1

These days, we typically use

12 120 {30 | O

8 [12] 2| 0| 2x2Max-Pool | 20|30
34 (70|37 | 4 112 37

112100 | 25 | 12
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LeNet 5, Layer C5

C3: f. maps 16@10x10
C1: feature maps S4:1. maps 16@5x5

INPUT
322 6@28:28 S2: . maps

Full connection Gaussian connections
C c Full i

e C5: Convolutional layer with 120 feature maps of size 1x1

e Each unit in C5 is connected to all 16 5x5 receptive fields in S4
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LeNet 5, Layer C5

C3:f maps 16@10x10
NPUT S5 foctre mape S4: . maps 16@5x5
3232 2 f maps

Full connection Gaussian connections
C c Full i

e C5: Convolutional layer with 120 feature maps of size 1x1

e Each unit in C5 is connected to all 16 5x5 receptive fields in S4

Layer C5: 120 * (16 % 25 + 1) = 48120 trainable parameters and
connections (Fully Connected)
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LeNet 5, Layer F6

o C3:f. maps 16@10x10
feature maps. 54: 1. maps 16@5x5
INPUT

32532 6@28x28

Full connection Gaussian connections
C i [~ i Full i

e Layer F6: 84 fully connected nodes. 84*(120+1)=10164 trainable
parameters and connections.
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LeNet 5, Layer F6

o C3:f. maps 16@10x10
feature maps. 54: 1. maps 16@5x5
INPUT

32532 6@28x28

Full connection Gaussian connections
C i [~ i Full i

e Layer F6: 84 fully connected nodes. 84*(120+1)=10164 trainable
parameters and connections.
e Output layer: 10 RBF (One for each digit)

Where i =1,2,..10
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LeNet 5, Layer F6

o C3:f. maps 16@10x10
feature maps. 54: 1. maps 16@5x5
INPUT

Sons 6@28x28

Full connection Gaussian connections
C i [~ i Full i

e Layer F6: 84 fully connected nodes. 84*(120+1)=10164 trainable
parameters and connections.
e Output layer: 10 RBF (One for each digit)

84

vi= Y (x5 — wy)’

j=1
Where i =1,2,..10

84 = 7x12, stylized image
Weight update: Backpropagation
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GooglLeNet (Szegedy et al., 2015

type pa;ﬁ;;zel O‘Slg:' depth | #1x1 ﬁ‘;‘i #3x3 ::g:ci #5x5 ;:;: params | ops

convolution TxT7/2 112x112x64 1 27K 34M
max pool 3x3/2 5656 x64 0

convolution 3x3/1 56x56% 192 2 64 192 112K | 360M
‘max pool 3x3/2 28x28%192 0

inception (3a) 28x28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28x28x480 2 128 128 192 32 96 64 380K | 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K | 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K | 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K | 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K | 119M
inception (4¢) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTx832 0

inception (5a) Tx7x832 2 256 160 320 32 128 128 1072K | 54M

inception (5b) Tx7x1024 2 384 192 384 48 128 128 | 1388K | 7IM

avg pool TX7/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K M

softmax 1x1x1000 0

Today's networks can go much deeper than LeNet!
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Recurrent Neural Networks

e Used to model temporal data (e.g., speech recognition).
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e Creates an “internal state” of the hidden node input/outputs.
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Recurrent Neural Networks

e Used to model temporal data (e.g., speech recognition).

e Results can flow backwards (we use hidden node outputs from
previous times as inputs to the current node).

e Creates an “internal state” of the hidden node input/outputs.

W

Unfold

CE] [:> +| hn ]——[ h‘ + [ha

u tu tu

@@@

v o

e Several variants, e.g., long short-term memory (LSTM) networks.
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You should know:

e Advantages of depth in neural networks.
e How to use dropout to prevent overfitting.

e Differences between a convolutional and feedforward neural network.
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