
18-661 Introduction to Machine Learning

Neural Networks-III

Spring 2020

ECE – Carnegie Mellon University



Outline

1. Review: Inference using a Trained Network: Forward Propagation

2. Review: Training a Neural Network: Backpropagatiopn

3. Optimizing SGD Parameters for Faster Convergence

4. Universality and Depth

5. Deep Neural Networks (DNNs)

1



Review: Inference using a

Trained Network: Forward

Propagation



How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x

: uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

2



How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x

:

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

2



How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x

:

zk = g(
∑

j wjkyj + bk)

2



How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

2



Review: Training a Neural

Network: Backpropagatiopn



Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (in class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because f (the output of the neural

network) is a complicated function of xn

• Solution: Use Stochastic gradient descent (SGD)

• Many optimization tricks are applied to speed-up SGD convergence

3



Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (in class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because f (the output of the neural

network) is a complicated function of xn

• Solution: Use Stochastic gradient descent (SGD)

• Many optimization tricks are applied to speed-up SGD convergence

3



Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (in class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because f (the output of the neural

network) is a complicated function of xn

• Solution: Use Stochastic gradient descent (SGD)

• Many optimization tricks are applied to speed-up SGD convergence

3



Stochastic gradient descent

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Randomly pick a data point (xn, tn)

• Compute the gradient using only this data point, for example,

∆ =
∂[f (xn)− tn]2

∂w

• Update the parameters: w← w − η∆

• Iterate the process until some (pre-specified) stopping criteria

4



Updating the parameter values

Back-propagate the error. Given parameters w , b:

• Step 1: Forward-propagate to find zk in terms of the input (the

“feed-forward signals”).

• Step 2: Calculate output error E by comparing the predicted output

zk to its true value tk .

• Step 3: Back-propagate E by weighting it by the gradients of the

associated activation functions and the weights in previous layers.

• Step 4: Calculate the gradients ∂E
∂w and ∂E

∂b for the parameters w , b

at each layer based on the backpropagated error signal and the

feedforward signals from the inputs.

• Step 5: Update the parameters using the calculated gradients

w ← w − η ∂E
∂w , b ← b − η ∂E

∂b where η is the step size.

5



Illustrative example

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• wij : weights connecting node i in layer (`− 1) to node j in layer `.

• bj , bk : bias for nodes j and k .

• uj , uk : inputs to nodes j and k (where uj = bj +
∑

i xiwij).

• gj , gk : activation function for node j (applied to uj) and node k.

• yj = gj(uj), zk = gk(uk): output/activation of nodes j and k.

• tk : target value for node k in the output layer.

6



Illustrative example (steps 1 and 2)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 1: Forward-propagate for each output zk .

zk = gk(uk) = gk(bk +
∑
j

yjwjk) = gk(bk +
∑
j

gj(bj +
∑
i

xiwij)wjk)

• Step 2: Find the error. Let’s assume that the error function is the

sum of the squared differences between the target values tk and the

network output zk : E = 1
2

∑
k∈K (zk − tk)2.

7



Illustrative example (steps 1 and 2)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 1: Forward-propagate for each output zk .

zk = gk(uk) = gk(bk +
∑
j

yjwjk) = gk(bk +
∑
j

gj(bj +
∑
i

xiwij)wjk)

• Step 2: Find the error. Let’s assume that the error function is the

sum of the squared differences between the target values tk and the

network output zk : E = 1
2

∑
k∈K (zk − tk)2.

7



Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk = (zk − tk)g ′k(uk)yj = δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

8



Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk

= (zk − tk)g ′k(uk)yj = δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

8



Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk = (zk − tk)g ′k(uk)yj = δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

8



Illustrative example (step 3, hidden layer)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Step 3 (cont’d): Now let’s consider wij in the hidden layer, recalling

uj = bi +
∑

i xiwij , uk = bk +
∑

j gj(uj)wjk , zk = gk(uk):

∂E

∂wij
=

∑
k∈K

∂E

∂uk

∂uk
∂yj

∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjk
∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjkg
′
j (uj)xi = δjxi

where we substituted δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk , the error in uj .

9



Illustrative example (step 3, hidden layer)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Step 3 (cont’d): Now let’s consider wij in the hidden layer, recalling

uj = bi +
∑

i xiwij , uk = bk +
∑

j gj(uj)wjk , zk = gk(uk):

∂E

∂wij
=

∑
k∈K

∂E

∂uk

∂uk
∂yj

∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjk
∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjkg
′
j (uj)xi = δjxi

where we substituted δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk , the error in uj .

9



Illustrative example (steps 3 and 4)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 3 (cont’d): We similarly find that ∂E
∂bk

= δk , ∂E
∂bj

= δj .

• Step 4: Calculate the gradients. We have found that

∂E

∂wij
= δjxi and

∂E

∂wjk
= δkyj .

where δk = (zk − tk)g ′k(uk), δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk .

Now since we know the zk , yj , xi , uk and uj for a given set of

parameter values w , b, we can use these expressions to calculate the

gradients at each iteration and update them.
10



Illustrative example (steps 4 and 5)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 4: Calculate the gradients. We have found that

∂E

∂wij
= δjxi and

∂E

∂wjk
= δkyj .

where δk = (zk − tk)g ′k(uk), δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk .

• Step 5: Update the weights and biases with learning rate η. For

example

wjk ← wjk − η
∂E

∂wjk
and wij ← wij − η

∂E

∂wij
11



High-level Procedure: Can be Used with More Hidden Layers

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Final Layer

• Error in each of its outputs is zk − tk .

• Error in input uk to the final layer is δk = g ′k(uk)(zk − tk)

Hidden Layer

• Error in output yj is
∑

k∈K δkwjk .

• Error in the input uj of the hidden layer is δj = g ′j (uj)
∑

k∈K δkwjk

The gradient w.r.t. wij is xiδj .

12



High-level Procedure: Can be Used with More Hidden Layers

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Final Layer

• Error in each of its outputs is zk − tk .

• Error in input uk to the final layer is δk = g ′k(uk)(zk − tk)

Hidden Layer

• Error in output yj is
∑

k∈K δkwjk .

• Error in the input uj of the hidden layer is δj = g ′j (uj)
∑

k∈K δkwjk

The gradient w.r.t. wij is xiδj .
12



Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation

• Represent the weights between layers l − 1 and l as a matrix W(l)

and biases as a row vector b(l)

• Outputs of layer l − 1 are in a row vector y(l−1). Then we have

u(l) = y(l−1)W(l) + b(l).

• Outputs of layer l are in the row vector y(l) = g(u(l)).

13



Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation

• Represent the weights between layers l − 1 and l as a matrix W(l)

and biases as a row vector b(l)

• Outputs of layer l − 1 are in a row vector y(l−1). Then we have

u(l) = y(l−1)W(l) + b(l).

• Outputs of layer l are in the row vector y(l) = g(u(l)).

13



Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation

• Represent the weights between layers l − 1 and l as a matrix W(l)

and biases as a row vector b(l)

• Outputs of layer l − 1 are in a row vector y(l−1). Then we have

u(l) = y(l−1)W(l) + b(l).

• Outputs of layer l are in the row vector y(l) = g(u(l)).

13



Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find ∆(l), the vector of errors in u(l) in terms of the

final error

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

14



Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find ∆(l), the vector of errors in u(l) in terms of the

final error

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

14



Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find ∆(l), the vector of errors in u(l) in terms of the

final error

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

14



Optimizing SGD Parameters for

Faster Convergence



Mini-batch SGD

• Recall the empirical risk loss function that we considered for the

backpropagation discussion

E =
N∑

n=1

1

2
(f (xn)− tn)2

• For large training datasets (large N), then computing gradients with

respect to each datapoint is expensive. For example, for the last

year, the batch gradients are

∂E

∂wjk
=

N∑
n=1

(zk − tk)

• Therefore we use stochastic gradient descent (SGD), where we

choose a random data point xn and use E = 1
2 (f (xn)− tn)2 instead

of the entire sum

15



Mini-batch SGD

• Recall the empirical risk loss function that we considered for the

backpropagation discussion

E =
N∑

n=1

1

2
(f (xn)− tn)2

• For large training datasets (large N), then computing gradients with

respect to each datapoint is expensive. For example, for the last

year, the batch gradients are

∂E

∂wjk
=

N∑
n=1

(zk − tk)

• Therefore we use stochastic gradient descent (SGD), where we

choose a random data point xn and use E = 1
2 (f (xn)− tn)2 instead

of the entire sum

15



Mini-batch SGD

• Recall the empirical risk loss function that we considered for the

backpropagation discussion

E =
N∑

n=1

1

2
(f (xn)− tn)2

• For large training datasets (large N), then computing gradients with

respect to each datapoint is expensive. For example, for the last

year, the batch gradients are

∂E

∂wjk
=

N∑
n=1

(zk − tk)

• Therefore we use stochastic gradient descent (SGD), where we

choose a random data point xn and use E = 1
2 (f (xn)− tn)2 instead

of the entire sum

15



Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and gives better error convergence,

but increases computing cost per iteration

16



Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and gives better error convergence,

but increases computing cost per iteration

16



Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and gives better error convergence,

but increases computing cost per iteration

16



Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and gives better error convergence,

but increases computing cost per iteration

16



Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and typically gives better error

convergence, but increases computing cost per iteration

17



Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and typically gives better error

convergence, but increases computing cost per iteration

17



Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and typically gives better error

convergence, but increases computing cost per iteration

17



Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and typically gives better error

convergence, but increases computing cost per iteration

17



How to Choose Mini-batch size m

• Small training datasets – use batch gradient descent m = N

• Large training datasets – typical m are 64, 128, 256 ... whatever fits

in the CPU/GPU memory

• Mini-batch size is another hyperparameter that you have to tune

Image source: https://github.com/buomsoo-kim/

Machine-learning-toolkits-with-python

18

https://github.com/buomsoo-kim/Machine-learning-toolkits-with-python
https://github.com/buomsoo-kim/Machine-learning-toolkits-with-python


Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation

• Represent the weights between layers l − 1 and l as a matrix W(l)

and biases as a vector b(l) (dimensions do NOT depend on m)

• Outputs of layer l − 1 are arranged in an m × nl−l size matrix

Y(l−1), where each row is the layer l − 1 outputs for one sample.

19



Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation

• Represent the weights between layers l − 1 and l as a matrix W(l)

and biases as a vector b(l) (dimensions do NOT depend on m)

• Outputs of layer l − 1 are arranged in an m × nl−l size matrix

Y(l−1), where each row is the layer l − 1 outputs for one sample.

19



Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation (contd)

• Then we have m × nl matrix U(l) = Y(l−1)W(l) + [1, 1, . . . , 1]Tb(l)

of layer l inputs, where [1, 1, . . . , 1]T is a column of m ones

• Outputs of layer l is an m × n(l) matrix Y(l) = g(U(l)).

20



Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation (contd)

• Then we have m × nl matrix U(l) = Y(l−1)W(l) + [1, 1, . . . , 1]Tb(l)

of layer l inputs, where [1, 1, . . . , 1]T is a column of m ones

• Outputs of layer l is an m × n(l) matrix Y(l) = g(U(l)).

20



Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find the m × n(l) size matrix ∆(l) of errors in U(l) in

terms of the final error E

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

21



Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find the m × n(l) size matrix ∆(l) of errors in U(l) in

terms of the final error E

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

21



Vectorized Implementation of Mini-batch SGD

Much faster than implementing a loop over all neurons in each layer and

all samples in a mini-batch

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find the m × n(l) size matrix ∆(l) of errors in U(l) in

terms of the final error E

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

21



Learning Rate

• SGD Update Rule

w (t+1) = w (t) − η ∂E

∂w (t)
= w (t) − η∇E (w (t))

• Large η; Faster convergence, but higher error floor (the flat portion

of each curve)

• Small η: Slow convergence, but lower error floor (the blue curve will

eventually go below the red curve)

• To get the best of both worlds, decay η over time

Image Source: https://towardsdatascience.com/

understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

22

https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10


How to Decay the Learning Rate?

A common way to decay η

• Start with some learning rate, say η = 0.1

• Monitor the training loss and wait till it flattens

• Reduce η by a fixed factor, say 5. New η = 0.02.

• Reduce again by the same factor when curve flattens

Image Source: http://www.bdhammel.com/learning-rates/

23

http://www.bdhammel.com/learning-rates/


How to Decay the Learning Rate?

A common way to decay η

• Start with some learning rate, say η = 0.1

• Monitor the training loss and wait till it flattens

• Reduce η by a fixed factor, say 5. New η = 0.02.

• Reduce again by the same factor when curve flattens

Image Source: http://www.bdhammel.com/learning-rates/

23

http://www.bdhammel.com/learning-rates/


How to Decay the Learning Rate?

A common way to decay η

• Start with some learning rate, say η = 0.1

• Monitor the training loss and wait till it flattens

• Reduce η by a fixed factor, say 5. New η = 0.02.

• Reduce again by the same factor when curve flattens

Image Source: http://www.bdhammel.com/learning-rates/

23

http://www.bdhammel.com/learning-rates/


How to Decay the Learning Rate?

A common way to decay η

• Start with some learning rate, say η = 0.1

• Monitor the training loss and wait till it flattens

• Reduce η by a fixed factor, say 5. New η = 0.02.

• Reduce again by the same factor when curve flattens

Image Source: http://www.bdhammel.com/learning-rates/

23

http://www.bdhammel.com/learning-rates/


How to Decay the Learning Rate?

An alternate approach – AdaGrad [Duchi et al 2011]

• Divide the learning rate η by the square root of the the sum of

squares of gradients until that time

• This scaling factor is different for each parameter depending upon

the corresponding gradients

w
(t+1)
i = w (t) − η√

g
(t)
i + ε

∇E (w
(t)
i )

where g
(t)
i =

∑t
k=1(∇E (w

(k)
i ))2.

• In a modified version AdaDelta, you take the sum of square gradients

over a fixed size sliding window instead of all times from 1 to t

24



How to Decay the Learning Rate?

An alternate approach – AdaGrad [Duchi et al 2011]

• Divide the learning rate η by the square root of the the sum of

squares of gradients until that time

• This scaling factor is different for each parameter depending upon

the corresponding gradients

w
(t+1)
i = w (t) − η√

g
(t)
i + ε

∇E (w
(t)
i )

where g
(t)
i =

∑t
k=1(∇E (w

(k)
i ))2.

• In a modified version AdaDelta, you take the sum of square gradients

over a fixed size sliding window instead of all times from 1 to t

24



How to Decay the Learning Rate?

An alternate approach – AdaGrad [Duchi et al 2011]

• Divide the learning rate η by the square root of the the sum of

squares of gradients until that time

• This scaling factor is different for each parameter depending upon

the corresponding gradients

w
(t+1)
i = w (t) − η√

g
(t)
i + ε

∇E (w
(t)
i )

where g
(t)
i =

∑t
k=1(∇E (w

(k)
i ))2.

• In a modified version AdaDelta, you take the sum of square gradients

over a fixed size sliding window instead of all times from 1 to t

24



Momentum – Accelerating SGD Convergence

• Remember the update to w in the previous iteration, that is,

w(t) −w(t−1)

• Add it to the next iteration’s update, that is,

w (t+1) = w (t) − η∇E (w (t)) + α(w(t) −w(t−1))

• α is called the momentum, and it is typically set to around 0.9 in

neural network training

• If current speed is fast, then we move even faster in the next

iteration

25



Momentum – Accelerating SGD Convergence

• Remember the update to w in the previous iteration, that is,

w(t) −w(t−1)

• Add it to the next iteration’s update, that is,

w (t+1) = w (t) − η∇E (w (t)) + α(w(t) −w(t−1))

• α is called the momentum, and it is typically set to around 0.9 in

neural network training

• If current speed is fast, then we move even faster in the next

iteration

25



Momentum – Accelerating SGD Convergence

• Remember the update to w in the previous iteration, that is,

w(t) −w(t−1)

• Add it to the next iteration’s update, that is,

w (t+1) = w (t) − η∇E (w (t)) + α(w(t) −w(t−1))

• α is called the momentum, and it is typically set to around 0.9 in

neural network training

• If current speed is fast, then we move even faster in the next

iteration

25



Momentum – Accelerating SGD Convergence

• Remember the update to w in the previous iteration, that is,

w(t) −w(t−1)

• Add it to the next iteration’s update, that is,

w (t+1) = w (t) − η∇E (w (t)) + α(w(t) −w(t−1))

• α is called the momentum, and it is typically set to around 0.9 in

neural network training

• If current speed is fast, then we move even faster in the next

iteration

25



Universality and Depth



Architecture Design

• First layer: h(1) = g (1)(W (1)T x + b(1))

• Second layer: h(2) = g (2)(W (2)T h(1) + b(2))

• How do we decide depth, width?

• In theory how many layers suffice?

26



Universality

• Theoretical result [Cybenko, 1989]: 2-layer net with linear output

with some squashing non-linearity in hidden units can approximate

any continuous function over compact domain to arbitrary accuracy

(given enough hidden units!)

• Implication: Regardless of function we are trying to learn, a one

hidden layer neural network can represent this function.

• But not guaranteed that our training algorithm will be able to learn

that function

• Gives no guidance on how large the network will be (exponential size

in worst case)

27



Universality

• Theoretical result [Cybenko, 1989]: 2-layer net with linear output

with some squashing non-linearity in hidden units can approximate

any continuous function over compact domain to arbitrary accuracy

(given enough hidden units!)

• Implication: Regardless of function we are trying to learn, a one

hidden layer neural network can represent this function.

• But not guaranteed that our training algorithm will be able to learn

that function

• Gives no guidance on how large the network will be (exponential size

in worst case)

27



Universality

• Theoretical result [Cybenko, 1989]: 2-layer net with linear output

with some squashing non-linearity in hidden units can approximate

any continuous function over compact domain to arbitrary accuracy

(given enough hidden units!)

• Implication: Regardless of function we are trying to learn, a one

hidden layer neural network can represent this function.

• But not guaranteed that our training algorithm will be able to learn

that function

• Gives no guidance on how large the network will be (exponential size

in worst case)

27



Universality

• Theoretical result [Cybenko, 1989]: 2-layer net with linear output

with some squashing non-linearity in hidden units can approximate

any continuous function over compact domain to arbitrary accuracy

(given enough hidden units!)

• Implication: Regardless of function we are trying to learn, a one

hidden layer neural network can represent this function.

• But not guaranteed that our training algorithm will be able to learn

that function

• Gives no guidance on how large the network will be (exponential size

in worst case)

27



Advantages of Depth

Figure 1: Goodfellow et al., 2014

• Increasing the depth of a neural network generally improves test

accuracy

28



Advantages of Depth

Figure 2: Goodfellow et at., 2014

• Control experiments show that other increases to model size don’t

yield the same effect.

• These are a lot of parameters...

29



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Preventing Overfitting

• Approach 1 Get more data

• Always best if possible!

• If no natural ones, use data augmentation

• Approach 2 Regularization

• Add regularizer term to the objective function

• Need to incorporate this in back-propagation

• Approach 3 Choose network structure with the right capacity:

• enough to fit the true regularities.

• Not enough to also fit spurious regularities (if they are weaker).

• Requires parameter tuning, hard to guess the right size.

• Approach 4 Average many different models

• Models with different forms to encourage diversity

• Train on different subsets of data

30



Dropout

• Consider a fully connected

neural net with H nodes in

hidden layers.

• Each time we present a training

example (for each iteration of

SGD), we randomly omit each

hidden unit with probability 0.5.

• So we are randomly sampling

from 2H different architectures.

• All architectures share weights.

31



Dropout

• Consider a fully connected

neural net with H nodes in

hidden layers.

• Each time we present a training

example (for each iteration of

SGD), we randomly omit each

hidden unit with probability 0.5.

• So we are randomly sampling

from 2H different architectures.

• All architectures share weights.

31



Dropout

• Consider a fully connected

neural net with H nodes in

hidden layers.

• Each time we present a training

example (for each iteration of

SGD), we randomly omit each

hidden unit with probability 0.5.

• So we are randomly sampling

from 2H different architectures.

• All architectures share weights.

31



Dropout

• Consider a fully connected

neural net with H nodes in

hidden layers.

• Each time we present a training

example (for each iteration of

SGD), we randomly omit each

hidden unit with probability 0.5.

• So we are randomly sampling

from 2H different architectures.

• All architectures share weights.

31



Dropout as preventing co-adaptation

• If a hidden unit knows which

other hidden units are present,

it can co-adapt to them on the

training data.

• But complex co-adaptations

are likely to go wrong on new

test data.

• Big, complex conspiracies are

not robust.

• Dropout as orthogonalization

32



Dropout as preventing co-adaptation

• If a hidden unit knows which

other hidden units are present,

it can co-adapt to them on the

training data.

• But complex co-adaptations

are likely to go wrong on new

test data.

• Big, complex conspiracies are

not robust.

• Dropout as orthogonalization

32



Dropout as preventing co-adaptation

• If a hidden unit knows which

other hidden units are present,

it can co-adapt to them on the

training data.

• But complex co-adaptations

are likely to go wrong on new

test data.

• Big, complex conspiracies are

not robust.

• Dropout as orthogonalization

32



Dropout as preventing co-adaptation

• If a hidden unit knows which

other hidden units are present,

it can co-adapt to them on the

training data.

• But complex co-adaptations

are likely to go wrong on new

test data.

• Big, complex conspiracies are

not robust.

• Dropout as orthogonalization

32



Dropout as form of model averaging

• We sample from 2H models. So only a few of the models ever get

trained, and they only get one training example.

• The sharing of the weights means that every model is very strongly

regularized.

• It’s a much better regularizer than L2 or L1 penalties that pull the

weights towards zero.

• Note that it’s hard to generalize dropout to other types of ML

models, unlike L2 or L1 penalties.

33



Dropout as form of model averaging

• We sample from 2H models. So only a few of the models ever get

trained, and they only get one training example.

• The sharing of the weights means that every model is very strongly

regularized.

• It’s a much better regularizer than L2 or L1 penalties that pull the

weights towards zero.

• Note that it’s hard to generalize dropout to other types of ML

models, unlike L2 or L1 penalties.

33



Dropout as form of model averaging

• We sample from 2H models. So only a few of the models ever get

trained, and they only get one training example.

• The sharing of the weights means that every model is very strongly

regularized.

• It’s a much better regularizer than L2 or L1 penalties that pull the

weights towards zero.

• Note that it’s hard to generalize dropout to other types of ML

models, unlike L2 or L1 penalties.

33



What do we do at test time?

• We could sample many different architectures and take the

geometric mean of their output distributions.

• It better to use all of the hidden units, but to halve their outgoing

weights.

• This exactly computes the geometric mean of the predictions of all

2H models (why?).

• This is not exactly the same as averaging all the separate dropped

out models, but it’s a pretty good approximation, and it’s fast.

• Alternatively, run the stochastic model (i.e., the different

architectures) several times on the same input.

• This gives us an idea of the uncertainty in the answer.

34



What do we do at test time?

• We could sample many different architectures and take the

geometric mean of their output distributions.

• It better to use all of the hidden units, but to halve their outgoing

weights.

• This exactly computes the geometric mean of the predictions of all

2H models (why?).

• This is not exactly the same as averaging all the separate dropped

out models, but it’s a pretty good approximation, and it’s fast.

• Alternatively, run the stochastic model (i.e., the different

architectures) several times on the same input.

• This gives us an idea of the uncertainty in the answer.

34



What do we do at test time?

• We could sample many different architectures and take the

geometric mean of their output distributions.

• It better to use all of the hidden units, but to halve their outgoing

weights.

• This exactly computes the geometric mean of the predictions of all

2H models (why?).

• This is not exactly the same as averaging all the separate dropped

out models, but it’s a pretty good approximation, and it’s fast.

• Alternatively, run the stochastic model (i.e., the different

architectures) several times on the same input.

• This gives us an idea of the uncertainty in the answer.

34



Some dropout tips

• Dropout lowers your capacity

• Increase network size by n/p where n is number of hidden units in

original, p is probability of dropout

• Dropout slows down error convergence

• Increase learning rate by 10 to 100

• Or increase momentum (e.g. from 0.9 to 0.99)

• These can cause large weight growths, use weight regularization

• May require more iterations to converge

35



Some dropout tips

• Dropout lowers your capacity

• Increase network size by n/p where n is number of hidden units in

original, p is probability of dropout

• Dropout slows down error convergence

• Increase learning rate by 10 to 100

• Or increase momentum (e.g. from 0.9 to 0.99)

• These can cause large weight growths, use weight regularization

• May require more iterations to converge

35



Deep Neural Networks (DNNs)



Basic idea behind DNNs

Architecturally, a big neural network (with a lot of variants)

• in depth: 4-5 layers are commonly (Google LeNet uses more than 20)

• in width: each layer might have a few thousand hidden units

• the number of parameters: hundreds of millions, even billions

Algorithmically, many new things, including:

• Pre-training: do not do error-backprogation right away

• Layer-wise greedy: train one layer at a time

Computing

• Requires fast computations and coping with a lot of data

• Ex: fast Graphics Processing Unit (GPUs) are almost indispensable

36



Basic idea behind DNNs

Architecturally, a big neural network (with a lot of variants)

• in depth: 4-5 layers are commonly (Google LeNet uses more than 20)

• in width: each layer might have a few thousand hidden units

• the number of parameters: hundreds of millions, even billions

Algorithmically, many new things, including:

• Pre-training: do not do error-backprogation right away

• Layer-wise greedy: train one layer at a time

Computing

• Requires fast computations and coping with a lot of data

• Ex: fast Graphics Processing Unit (GPUs) are almost indispensable

36



Basic idea behind DNNs

Architecturally, a big neural network (with a lot of variants)

• in depth: 4-5 layers are commonly (Google LeNet uses more than 20)

• in width: each layer might have a few thousand hidden units

• the number of parameters: hundreds of millions, even billions

Algorithmically, many new things, including:

• Pre-training: do not do error-backprogation right away

• Layer-wise greedy: train one layer at a time

Computing

• Requires fast computations and coping with a lot of data

• Ex: fast Graphics Processing Unit (GPUs) are almost indispensable

36



Deep Convolutional Networks

• Deep supervised neural networks are generally too difficult to train

• One notable exception: Convolutional neural networks (CNN)

• Convolutional nets were inspired by the visual system’s structure

• They typically have more than five layers, a number of layers which

makes fully-connected neural networks almost impossible to train

properly when initialized randomly.

37



Deep Convolutional Networks

• Deep supervised neural networks are generally too difficult to train

• One notable exception: Convolutional neural networks (CNN)

• Convolutional nets were inspired by the visual system’s structure

• They typically have more than five layers, a number of layers which

makes fully-connected neural networks almost impossible to train

properly when initialized randomly.

37



Deep Convolutional Networks

• Deep supervised neural networks are generally too difficult to train

• One notable exception: Convolutional neural networks (CNN)

• Convolutional nets were inspired by the visual system’s structure

• They typically have more than five layers, a number of layers which

makes fully-connected neural networks almost impossible to train

properly when initialized randomly.

37



Deep Convolutional Networks

• Deep supervised neural networks are generally too difficult to train

• One notable exception: Convolutional neural networks (CNN)

• Convolutional nets were inspired by the visual system’s structure

• They typically have more than five layers, a number of layers which

makes fully-connected neural networks almost impossible to train

properly when initialized randomly.

37



Deep Convolutional Networks

• Compared to standard feedforward neural networks with

similarly-sized layer

• CNNs have much fewer connections and parameters

• and so they are easier to train

• while their theoretically-best performance is likely to be only slightly

worse.

• Usually applied to image datasets (where convolutions have a long

history).

38



Deep Convolutional Networks

• Compared to standard feedforward neural networks with

similarly-sized layer

• CNNs have much fewer connections and parameters

• and so they are easier to train

• while their theoretically-best performance is likely to be only slightly

worse.

• Usually applied to image datasets (where convolutions have a long

history).

38



Convolution

• Continuous functions:

(f ∗ g)(t) =

∫ ∞
−∞

f (τ)g(t − τ)dτ

=

∫ ∞
−∞

f (t − τ)g(τ)dτ

• Discrete functions:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g [n −m]

=
∞∑

m=−∞
f [n −m]g [m]

39



Convolution

• Continuous functions:

(f ∗ g)(t) =

∫ ∞
−∞

f (τ)g(t − τ)dτ

=

∫ ∞
−∞

f (t − τ)g(τ)dτ

• Discrete functions:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g [n −m]

=
∞∑

m=−∞
f [n −m]g [m]

39



Convolution

• If discrete g has support on -M,...,M:

(f ∗ g)[n] =
M∑

m=−M

f [n −m]g [m]

Where g [m] is the kernel

• Product of polynomials

[1, 2] ∗ [3, 2, 5] = (x + 2) ∗ (3x2 + 2x + 5) = 3x3 + 8x2 + 9x + 10

[1× 3 + 2× 0, 1× 2 + 2× 3, 1× 5 + 2× 2, 1× 0 + 2× 5] = [3, 8, 9, 10]

Where [1, 2] is the kernel of convolution

40



Convolution

• If discrete g has support on -M,...,M:

(f ∗ g)[n] =
M∑

m=−M

f [n −m]g [m]

Where g [m] is the kernel

• Product of polynomials

[1, 2] ∗ [3, 2, 5] = (x + 2) ∗ (3x2 + 2x + 5) = 3x3 + 8x2 + 9x + 10

[1× 3 + 2× 0, 1× 2 + 2× 3, 1× 5 + 2× 2, 1× 0 + 2× 5] = [3, 8, 9, 10]

Where [1, 2] is the kernel of convolution

40



Convolution

• If discrete g has support on -M,...,M:

(f ∗ g)[n] =
M∑

m=−M

f [n −m]g [m]

Where g [m] is the kernel

• Product of polynomials

[1, 2] ∗ [3, 2, 5] = (x + 2) ∗ (3x2 + 2x + 5) = 3x3 + 8x2 + 9x + 10

[1× 3 + 2× 0, 1× 2 + 2× 3, 1× 5 + 2× 2, 1× 0 + 2× 5] = [3, 8, 9, 10]

Where [1, 2] is the kernel of convolution

40



2-Dimensional Convolution

f [x .y ] ∗ g [x , y ] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2] · g [x − n1, y − n2]

41



Convolutional Network Layers

Convolve subsets of an image with a small filter.

• Each pixel in the output image is a weighted sum of the filter and a

subset of the input.

• Learn the values in the filter (these are your parameters, or weights).

42



LeNet 5, LeCun 1998

• Input: 32× 32 pixel image. Largest character is 20× 20 (All

important info should be in the center of the receptive field of the

highest level feature detectors)

• Cx: Convolutional layer (C1,C3,C5)

• Sx: Sub-sample layer (S2,S4)

• Fx: Fully connected layer (F6)

• Black and White pixel values are normalized:

Eg. White=−0.1, Black=−1.175 (Mean of pixels = 0, Standard

deviation of pixels = 1)

43



LeNet 5, LeCun 1998

• Input: 32× 32 pixel image. Largest character is 20× 20 (All

important info should be in the center of the receptive field of the

highest level feature detectors)

• Cx: Convolutional layer (C1,C3,C5)

• Sx: Sub-sample layer (S2,S4)

• Fx: Fully connected layer (F6)

• Black and White pixel values are normalized:

Eg. White=−0.1, Black=−1.175 (Mean of pixels = 0, Standard

deviation of pixels = 1)

43



LeNet 5, LeCun 1998

• Input: 32× 32 pixel image. Largest character is 20× 20 (All

important info should be in the center of the receptive field of the

highest level feature detectors)

• Cx: Convolutional layer (C1,C3,C5)

• Sx: Sub-sample layer (S2,S4)

• Fx: Fully connected layer (F6)

• Black and White pixel values are normalized:

Eg. White=−0.1, Black=−1.175 (Mean of pixels = 0, Standard

deviation of pixels = 1)

43



LeNet 5, LeCun 1998

• Input: 32× 32 pixel image. Largest character is 20× 20 (All

important info should be in the center of the receptive field of the

highest level feature detectors)

• Cx: Convolutional layer (C1,C3,C5)

• Sx: Sub-sample layer (S2,S4)

• Fx: Fully connected layer (F6)

• Black and White pixel values are normalized:

Eg. White=−0.1, Black=−1.175 (Mean of pixels = 0, Standard

deviation of pixels = 1)

43



LeNet 5, LeCun 1998

• Input: 32× 32 pixel image. Largest character is 20× 20 (All

important info should be in the center of the receptive field of the

highest level feature detectors)

• Cx: Convolutional layer (C1,C3,C5)

• Sx: Sub-sample layer (S2,S4)

• Fx: Fully connected layer (F6)

• Black and White pixel values are normalized:

Eg. White=−0.1, Black=−1.175 (Mean of pixels = 0, Standard

deviation of pixels = 1)

43



LeNet 5, Layer C1

C1: Convolutional layer with 6 feature maps of size 28X28 C1k(k = 1..6)

Each unit of C1 has 5x5 receptive field in the input layer.

• Topological structure

• Sparse connections

• Shared weights

(5 ∗ 5 + 1) ∗ 6 = 156 parameters to learn

Connections: 28 ∗ 28 ∗ (5 ∗ 5 + 1) ∗ 6 = 122304

If it was fully connected, we had (32*32+1)*(28*28)*6 parameters

44



LeNet 5, Layer C1

C1: Convolutional layer with 6 feature maps of size 28X28 C1k(k = 1..6)

Each unit of C1 has 5x5 receptive field in the input layer.

• Topological structure

• Sparse connections

• Shared weights

(5 ∗ 5 + 1) ∗ 6 = 156 parameters to learn

Connections: 28 ∗ 28 ∗ (5 ∗ 5 + 1) ∗ 6 = 122304

If it was fully connected, we had (32*32+1)*(28*28)*6 parameters

44



LeNet 5, Layer S2

S2: Sub-sampling layer with 6 feature maps of size 14× 14

2× 2 non-overlapping receptive fields in C1

S2k
ij = tanh(wk

1

1∑
s,t=0

C1k
2i−s,2j−t + wk

2 )

Layer S2: 6*2=12 trainable parameters

Connections: 14 ∗ 14 ∗ (2 ∗ 2 + 1) ∗ 6 = 5880

45



LeNet 5, Layer S2

S2: Sub-sampling layer with 6 feature maps of size 14× 14

2× 2 non-overlapping receptive fields in C1

These days, we typically use

46



LeNet 5, Layer C5

• C5: Convolutional layer with 120 feature maps of size 1x1

• Each unit in C5 is connected to all 16 5x5 receptive fields in S4

Layer C5: 120 ∗ (16 ∗ 25 + 1) = 48120 trainable parameters and

connections (Fully Connected)

47



LeNet 5, Layer C5

• C5: Convolutional layer with 120 feature maps of size 1x1

• Each unit in C5 is connected to all 16 5x5 receptive fields in S4

Layer C5: 120 ∗ (16 ∗ 25 + 1) = 48120 trainable parameters and

connections (Fully Connected)

47



LeNet 5, Layer F6

• Layer F6: 84 fully connected nodes. 84*(120+1)=10164 trainable

parameters and connections.

• Output layer: 10 RBF (One for each digit)

yi =
84∑
j=1

(xj − wij)
2

Where i =1,2,..10

84 = 7x12, stylized image

Weight update: Backpropagation

48



LeNet 5, Layer F6

• Layer F6: 84 fully connected nodes. 84*(120+1)=10164 trainable

parameters and connections.

• Output layer: 10 RBF (One for each digit)

yi =
84∑
j=1

(xj − wij)
2

Where i =1,2,..10

84 = 7x12, stylized image

Weight update: Backpropagation

48



LeNet 5, Layer F6

• Layer F6: 84 fully connected nodes. 84*(120+1)=10164 trainable

parameters and connections.

• Output layer: 10 RBF (One for each digit)

yi =
84∑
j=1

(xj − wij)
2

Where i =1,2,..10

84 = 7x12, stylized image

Weight update: Backpropagation

48



GoogLeNet (Szegedy et al., 2015)

Today’s networks can go much deeper than LeNet!

49



Recurrent Neural Networks

• Used to model temporal data (e.g., speech recognition).

• Results can flow backwards (we use hidden node outputs from

previous times as inputs to the current node).

• Creates an “internal state” of the hidden node input/outputs.

• Several variants, e.g., long short-term memory (LSTM) networks.

50



Recurrent Neural Networks

• Used to model temporal data (e.g., speech recognition).

• Results can flow backwards (we use hidden node outputs from

previous times as inputs to the current node).

• Creates an “internal state” of the hidden node input/outputs.

• Several variants, e.g., long short-term memory (LSTM) networks.

50



Recurrent Neural Networks

• Used to model temporal data (e.g., speech recognition).

• Results can flow backwards (we use hidden node outputs from

previous times as inputs to the current node).

• Creates an “internal state” of the hidden node input/outputs.

• Several variants, e.g., long short-term memory (LSTM) networks.

50



Recurrent Neural Networks

• Used to model temporal data (e.g., speech recognition).

• Results can flow backwards (we use hidden node outputs from

previous times as inputs to the current node).

• Creates an “internal state” of the hidden node input/outputs.

• Several variants, e.g., long short-term memory (LSTM) networks.

50



Summary

You should know:

• Advantages of depth in neural networks.

• How to use dropout to prevent overfitting.

• Differences between a convolutional and feedforward neural network.

51


	Review: Inference using a Trained Network: Forward Propagation
	Review: Training a Neural Network: Backpropagatiopn
	Optimizing SGD Parameters for Faster Convergence
	Universality and Depth
	Deep Neural Networks (DNNs)

