
18-661 Introduction to Machine Learning

Neural Networks-II

Spring 2020

ECE – Carnegie Mellon University

Announcements

• All campuses have moved to remote lectures, recitations and office

hours.

• Homework 4 is due today, March 23 at 11:59pm ET.

• Homework 5 released and due April 1.

• Recitation on Friday will cover neural networks. Same Zoom link as

the lectures and same times as before.

• The final exam will also be conducted online – more details to follow

• Re: asking questions via Zoom chat – We very much encourage and

appreciate your participation! I will try to answer as many questions

as possible, but might miss some questions while teaching the

lecture. If your question is not answered, please unmute yourself and

ask, or attend the post-class office hours.

1

Outline

1. Review: Neural networks Motivation

2. Review: Single Neuron Models

3. Review: Multi-layer Neural Network

4. Inference using a Trained Network: Forward Propagation

5. Training a Neural Network: Backpropagatiopn

6. Optimizing SGD Parameters for Faster Convergence

2

Review: Neural networks

Motivation

Logistic Regression: How to Handle Complex Boundaries?

x1

x 2

• This data is not linear separable

• Use non-linear basis functions to add more features

3

Logistic Regression: How to Handle Complex Boundaries?

x1

x 2

• This data is not linear separable

• Use non-linear basis functions to add more features

3

Adding polynomial features

• New feature vector is x = [1, x1, x2, x
2
1 , x

2
2]

• Pr(y = 1|x) = σ(w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2)

• If w = [−1, 0, 0, 1, 1], the boundary is −1 + x2
1 + x2

2 = 0

• If −1 + x2
1 + x2

2 ≥ 0 declare spam

• If −1 + x2
1 + x2

2 < 0 declare ham

x1

 -1 + x1
2 + x2

2 = 0
x 2

4

But what if we had a large number of features?
classificationdata intelligence

= ??

Each feature xi is one pixel in an 100 × 100 input image

• Adding polynomial features would result in an enormous φ(x)

• Can we somehow only retain the important features?

• We will need to carefully hand-pick them, which can be hard and

tedious

• Neural networks automate this for us!

5

But what if we had a large number of features?
classificationdata intelligence

= ??

Each feature xi is one pixel in an 100 × 100 input image

• Adding polynomial features would result in an enormous φ(x)

• Can we somehow only retain the important features?

• We will need to carefully hand-pick them, which can be hard and

tedious

• Neural networks automate this for us!

5

But what if we had a large number of features?
classificationdata intelligence

= ??

Each feature xi is one pixel in an 100 × 100 input image

• Adding polynomial features would result in an enormous φ(x)

• Can we somehow only retain the important features?

• We will need to carefully hand-pick them, which can be hard and

tedious

• Neural networks automate this for us!

5

But what if we had a large number of features?
classificationdata intelligence

= ??

Each feature xi is one pixel in an 100 × 100 input image

• Adding polynomial features would result in an enormous φ(x)

• Can we somehow only retain the important features?

• We will need to carefully hand-pick them, which can be hard and

tedious

• Neural networks automate this for us!

5

Neural Networks Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

6

Neural Networks Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

6

Neural Networks Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

6

Neural Networks Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

6

Neural Networks Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

6

Neural Networks Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

6

Neural Networks Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

6

Inspiration from Biology: How does our brain work?

classificationdata intelligence

= ??

Each feature xi is one pixel in an 100 × 100 input image

• Humans easily perform such complex image or speech recognition

tasks

• We cannot exactly describe a set of rules by which we distinguish

cats vs. dogs, but we almost always know the correct answers when

a new image is presented to us

• How do our brains learn these complex tasks?

7

Neurons in the Brain

• Each neuron is a non-linear computing unit

• It collects input signals from neighboring neurons

• Output of its computation is transmitted through the axon – can be

viewed as the transformed feature

• Other neurons use this output as the input signal

Neuron in the brain

An average human brain has ∼ 100 billion neurons!

8

Artificial Neuron Model

Based on the biological insights, a mathematical model for an ’artificial’

neuron was developed

• Each input xi is multiplied by weight wi

• Add a +1 input neuron which is multiplied by the bias b

• Apply a non-linear function g to the weighted combination of the

inputs, wTx + b

• Different candidates for g : heaviside function, sigmoid, tanh,

rectified linear unit, etc.

x1

gx2

x3

+1

b

w1

w2
w3

g(wT x + b)

Single Artificial Neuron 9

Mimicking the human brain

Pass inputs through a “network” of neurons to obtain outputs.

• Neural networks are very good at handling large-scale data.

• They can learn very complex relationships.

• Requires careful configuration: what does this network look like?

Each function is sometimes called a “node” in the network. We group

functions into “layers” depending on how many functions their inputs

have passed through since the original inputs.

10

Mimicking the human brain

Pass inputs through a “network” of neurons to obtain outputs.

• Neural networks are very good at handling large-scale data.

• They can learn very complex relationships.

• Requires careful configuration: what does this network look like?

Each function is sometimes called a “node” in the network. We group

functions into “layers” depending on how many functions their inputs

have passed through since the original inputs.

10

Mimicking the human brain

Pass inputs through a “network” of neurons to obtain outputs.

• Neural networks are very good at handling large-scale data.

• They can learn very complex relationships.

• Requires careful configuration: what does this network look like?

Each function is sometimes called a “node” in the network. We group

functions into “layers” depending on how many functions their inputs

have passed through since the original inputs.
10

Review: Single Neuron Models

Example 1: Perceptron, Rosenblatt (1957)

• The perception is a single-unit neural network with the activation

function g(x) = sign(x)

• It considers a linear binary classification problem to distinguish

between two classes {−1,+1}.

x1

gx2

x3

+1

b

w1

w2

w3

g(wT x + b)
1

0 wTx+b, Linear comb.
of features

g(wTx+b)

-1

Perceptron

• Assign label sign(w>x + b) to a new sample

• Notation change: Merge b into the vector w and append 1 to the

vector x

11

Example 1: Perceptron, Rosenblatt (1957)

• The perception is a single-unit neural network with the activation

function g(x) = sign(x)

• It considers a linear binary classification problem to distinguish

between two classes {−1,+1}.

x1

gx2

x3

+1

b

w1

w2

w3

g(wT x + b)
1

0 wTx+b, Linear comb.
of features

g(wTx+b)

-1

Perceptron

• Assign label sign(w>x + b) to a new sample

• Notation change: Merge b into the vector w and append 1 to the

vector x

11

Example 1: Perceptron, Rosenblatt (1957)

• The perception is a single-unit neural network with the activation

function g(x) = sign(x)

• It considers a linear binary classification problem to distinguish

between two classes {−1,+1}.

x1

gx2

x3

+1

b

w1

w2

w3

g(wT x + b)
1

0 wTx+b, Linear comb.
of features

g(wTx+b)

-1

Perceptron

• Assign label sign(w>x + b) to a new sample

• Notation change: Merge b into the vector w and append 1 to the

vector x

11

Example 1: Perceptron, Rosenblatt (1957)

• The perception is a single-unit neural network with the activation

function g(x) = sign(x)

• It considers a linear binary classification problem to distinguish

between two classes {−1,+1}.

x1

gx2

x3

+1

b

w1

w2

w3

g(wT x + b)
1

0 wTx+b, Linear comb.
of features

g(wTx+b)

-1

Perceptron

• Assign label sign(w>x + b) to a new sample

• Notation change: Merge b into the vector w and append 1 to the

vector x

11

How to learn the weights w?

The objective is to learn w that minimizes the number of errors on the

training dataset. That is, minimize

ε =
∑
n

I[yn 6= sign(w>xn)]

Algorithm: For a randomly chosen data point (xn, yn) make small

changes to w so that

yn = sign(w>xn)

Two cases

• If yn = sign(w>xn), do nothing.

• If yn 6= sign(w>xn),

wnew ← wold + ynxn

12

Why would it work?

If yn 6= sign(w>xn), then

yn(w>xn) < 0

What would happen if we change to new wnew = w + ynxn?

yn[(w + ynxn)>xn] = ynw>xn + y2
nx
>
n xn

We are adding a positive number, so it is possible that

yn(wnew>xn) > 0

i.e., we are more likely to classify correctly

13

Example 1: Perceptron, Rosenblatt (1957)

Properties

• This is an online algorithm (works when data is arriving sequentially

as a stream)

• If the training data is linearly separable, the algorithm stops in a

finite number of steps.

• The parameter vector is always a linear combination of training

instances (requires initialization of w 0 = 0).

• We don’t need to set a learning rate

The perceptron algorithm was used in old times to train w by hand,

without a computer.

14

Example 2: Binary Logistic Regression

• Suppose g is the sigmoid function σ(wTx + b) = 1

1+e−(wT x+b)

• We can find a linear decision boundary separating two classes. The

output is the probability of x belonging to class 1.

x1

gx2

x3

+1

b

w1

w2

w3

g(wT x + b)
1

0 wTx+b, Linear comb.
of features

g(wTx+b)

Neuron with Sigmoid activation

15

Example 2: Binary Logistic Regression

• Suppose g is the sigmoid function σ(wTx + b) = 1

1+e−(wT x+b)

• We can find a linear decision boundary separating two classes. The

output is the probability of x belonging to class 1.

• This is binary logistic regression, which we already know.

classificationdata intelligence

= ??

linear decision boundary

16

Review: Multi-layer Neural

Network

Multi-layer Neural Network

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• wij : weights connecting node i in layer (`− 1) to node j in layer `.

• bj , bk : bias for nodes in layers j and k respectively.

• uj , uk : inputs to nodes j and k (where uj = bj +
∑

i xiwij).

• gj , gk : activation function for node j (applied to uj) and node k.

• yj = gj(uj), zk = gk(uk): output/activation of nodes j and k.

• tk : target value for node k in the output layer.

17

Multi-layer Neural Network

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• wij : weights connecting node i in layer (`− 1) to node j in layer `.

• bj , bk : bias for nodes in layers j and k respectively.

• uj , uk : inputs to nodes j and k (where uj = bj +
∑

i xiwij).

• gj , gk : activation function for node j (applied to uj) and node k.

• yj = gj(uj), zk = gk(uk): output/activation of nodes j and k.

• tk : target value for node k in the output layer.

17

Multi-layer Neural Network

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• wij : weights connecting node i in layer (`− 1) to node j in layer `.

• bj , bk : bias for nodes in layers j and k respectively.

• uj , uk : inputs to nodes j and k (where uj = bj +
∑

i xiwij).

• gj , gk : activation function for node j (applied to uj) and node k.

• yj = gj(uj), zk = gk(uk): output/activation of nodes j and k.

• tk : target value for node k in the output layer.

17

Multi-layer Neural Network

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• wij : weights connecting node i in layer (`− 1) to node j in layer `.

• bj , bk : bias for nodes in layers j and k respectively.

• uj , uk : inputs to nodes j and k (where uj = bj +
∑

i xiwij).

• gj , gk : activation function for node j (applied to uj) and node k.

• yj = gj(uj), zk = gk(uk): output/activation of nodes j and k.

• tk : target value for node k in the output layer.

17

Sigmoid Activation Function

σ(z) =
1

1 + e−z

• Squashing type non-linearity: pushes output to range [0,1]

18

The vanishing gradients problem

• Problem: Near-constant value across most of their domain, strongly

sensitive only when z is closer to zero

• Saturation makes gradient based learning difficult

19

Rectified Linear Units

• Approximates the softplus function which is log(1 + ez)

• ReLu Activation function is g(z) = max(0, z) with z ∈ R

• Similar to linear units. Easy to optimize!

• Give large and consistent gradients when active

20

Rectified Linear Units

• Approximates the softplus function which is log(1 + ez)

• ReLu Activation function is g(z) = max(0, z) with z ∈ R

• Similar to linear units. Easy to optimize!

• Give large and consistent gradients when active

20

Activation Choices for Each Layer

Output layer produces a classification decision.

• Probabilities of the input being in each class.

• Often uses sigmoid, softmax, or tanh activations.

Hidden layers convert activated inputs to classification features.

• ReLU, Leaky ReLU, ELU and variants are popular choices.

Input layer initially transforms the features.

Often uses linear, sigmoid, or tanh activations.

21

Activation Choices for Each Layer

Output layer produces a classification decision.

• Probabilities of the input being in each class.

• Often uses sigmoid, softmax, or tanh activations.

Hidden layers convert activated inputs to classification features.

• ReLU, Leaky ReLU, ELU and variants are popular choices.

Input layer initially transforms the features.

Often uses linear, sigmoid, or tanh activations.

21

Activation Choices for Each Layer

Output layer produces a classification decision.

• Probabilities of the input being in each class.

• Often uses sigmoid, softmax, or tanh activations.

Hidden layers convert activated inputs to classification features.

• ReLU, Leaky ReLU, ELU and variants are popular choices.

Input layer initially transforms the features.

Often uses linear, sigmoid, or tanh activations.

21

Inference using a Trained

Network: Forward Propagation

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x

: uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

22

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x

: uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

22

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x

: uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

22

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x

:

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

22

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x

:

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

22

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x

:

zk = g(
∑

j wjkyj + bk)

22

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x

:

zk = g(
∑

j wjkyj + bk)

22

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x

:

zk = g(
∑

j wjkyj + bk)

22

How do you perform inference using a trained neural network?

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Expressing outputs z in terms of inputs x is called

forward-propagation.

• Express inputs uj to the hidden layer in terms of x : uj =
∑

i wijxi + bj

• Express outputs yj of the hidden layer in terms of x :

yj = g(
∑

i wijxi + bj)

• Express inputs to the final layer in terms of x

• Express outputs zk of the final layer in terms of x :

zk = g(
∑

j wjkyj + bk)

22

Exercise: Forward-Propagation

Assume that we are using the sigmoid σ(x) = 1/(1 + e−x) activation

function.

x

1

1

0.5

z

1
1

0.5

0.5

0.25

0.5

• Outputs of the hidden layer are

σ(0.5x + 1) and σ(x + 0.5)

• Input to the last layer is 0.5σ(0.5x + 1) + 0.5σ(x + 0.5) + 0.25

• z = σ(0.5σ(0.5x + 1) + 0.5σ(x + 0.5) + 0.25)

23

Exercise: Forward-Propagation

Assume that we are using the sigmoid σ(x) = 1/(1 + e−x) activation

function.

x

1

1

0.5

z

1
1

0.5

0.5

0.25

0.5

• Outputs of the hidden layer are σ(0.5x + 1) and σ(x + 0.5)

• Input to the last layer is

0.5σ(0.5x + 1) + 0.5σ(x + 0.5) + 0.25

• z = σ(0.5σ(0.5x + 1) + 0.5σ(x + 0.5) + 0.25)

23

Exercise: Forward-Propagation

Assume that we are using the sigmoid σ(x) = 1/(1 + e−x) activation

function.

x

1

1

0.5

z

1
1

0.5

0.5

0.25

0.5

• Outputs of the hidden layer are σ(0.5x + 1) and σ(x + 0.5)

• Input to the last layer is 0.5σ(0.5x + 1) + 0.5σ(x + 0.5) + 0.25

• z = σ(0.5σ(0.5x + 1) + 0.5σ(x + 0.5) + 0.25)

23

Training a Neural Network:

Backpropagatiopn

Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (today’s class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because of f (the output of the neural

network) is a complicated function of xn

• Stochastic gradient descent is commonly used

• Many optimization tricks are applied

24

Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (today’s class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because of f (the output of the neural

network) is a complicated function of xn

• Stochastic gradient descent is commonly used

• Many optimization tricks are applied

24

Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (today’s class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because of f (the output of the neural

network) is a complicated function of xn

• Stochastic gradient descent is commonly used

• Many optimization tricks are applied

24

Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (today’s class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because of f (the output of the neural

network) is a complicated function of xn

• Stochastic gradient descent is commonly used

• Many optimization tricks are applied

24

Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (today’s class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because of f (the output of the neural

network) is a complicated function of xn

• Stochastic gradient descent is commonly used

• Many optimization tricks are applied

24

Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (today’s class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because of f (the output of the neural

network) is a complicated function of xn

• Stochastic gradient descent is commonly used

• Many optimization tricks are applied

24

Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (today’s class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because of f (the output of the neural

network) is a complicated function of xn

• Stochastic gradient descent is commonly used

• Many optimization tricks are applied

24

Learning Parameters

How to learn the parameters?

• Choose the right loss function

• Regression: Least-square loss (today’s class)

min
∑
n

(f (xn) − tn)2

• Classification: cross-entropy loss (in the homework)

min −
∑
n

∑
k

tnk log fk(xn) + (1 − tnk) log(1 − fk(xn))

• Hard optimization problem because of f (the output of the neural

network) is a complicated function of xn

• Stochastic gradient descent is commonly used

• Many optimization tricks are applied

24

Stochastic gradient descent

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Randomly pick a data point (xn, tn)

• Compute the gradient using only this data point, for example,

∆ =
∂[f (xn)− tn]2

∂w

• Update the parameters: w← w − η∆

• Iterate the process until some (pre-specified) stopping criteria

25

Stochastic gradient descent

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Randomly pick a data point (xn, tn)

• Compute the gradient using only this data point, for example,

∆ =
∂[f (xn)− tn]2

∂w

• Update the parameters: w← w − η∆

• Iterate the process until some (pre-specified) stopping criteria

25

Stochastic gradient descent

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Randomly pick a data point (xn, tn)

• Compute the gradient using only this data point, for example,

∆ =
∂[f (xn)− tn]2

∂w

• Update the parameters: w← w − η∆

• Iterate the process until some (pre-specified) stopping criteria

25

Stochastic gradient descent

zk

yj
xi

wij

bj

wjk

bk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Randomly pick a data point (xn, tn)

• Compute the gradient using only this data point, for example,

∆ =
∂[f (xn)− tn]2

∂w

• Update the parameters: w← w − η∆

• Iterate the process until some (pre-specified) stopping criteria

25

Updating the parameter values

Back-propagate the error. Given parameters w , b:

• Step 1: Forward-propagate to find zk in terms of the input (the

“feed-forward signals”).

• Step 2: Calculate output error E by comparing the predicted output

zk to its true value tk .

• Step 3: Back-propagate E by weighting it by the gradients of the

associated activation functions and the weights in previous layers.

• Step 4: Calculate the gradients ∂E
∂w and ∂E

∂b for the parameters w , b

at each layer based on the backpropagated error signal and the

feedforward signals from the inputs.

• Step 5: Update the parameters using the calculated gradients

w ← w − η ∂E
∂w , b ← b − η ∂E

∂b where η is the step size.

26

Updating the parameter values

Back-propagate the error. Given parameters w , b:

• Step 1: Forward-propagate to find zk in terms of the input (the

“feed-forward signals”).

• Step 2: Calculate output error E by comparing the predicted output

zk to its true value tk .

• Step 3: Back-propagate E by weighting it by the gradients of the

associated activation functions and the weights in previous layers.

• Step 4: Calculate the gradients ∂E
∂w and ∂E

∂b for the parameters w , b

at each layer based on the backpropagated error signal and the

feedforward signals from the inputs.

• Step 5: Update the parameters using the calculated gradients

w ← w − η ∂E
∂w , b ← b − η ∂E

∂b where η is the step size.

26

Updating the parameter values

Back-propagate the error. Given parameters w , b:

• Step 1: Forward-propagate to find zk in terms of the input (the

“feed-forward signals”).

• Step 2: Calculate output error E by comparing the predicted output

zk to its true value tk .

• Step 3: Back-propagate E by weighting it by the gradients of the

associated activation functions and the weights in previous layers.

• Step 4: Calculate the gradients ∂E
∂w and ∂E

∂b for the parameters w , b

at each layer based on the backpropagated error signal and the

feedforward signals from the inputs.

• Step 5: Update the parameters using the calculated gradients

w ← w − η ∂E
∂w , b ← b − η ∂E

∂b where η is the step size.

26

Updating the parameter values

Back-propagate the error. Given parameters w , b:

• Step 1: Forward-propagate to find zk in terms of the input (the

“feed-forward signals”).

• Step 2: Calculate output error E by comparing the predicted output

zk to its true value tk .

• Step 3: Back-propagate E by weighting it by the gradients of the

associated activation functions and the weights in previous layers.

• Step 4: Calculate the gradients ∂E
∂w and ∂E

∂b for the parameters w , b

at each layer based on the backpropagated error signal and the

feedforward signals from the inputs.

• Step 5: Update the parameters using the calculated gradients

w ← w − η ∂E
∂w , b ← b − η ∂E

∂b where η is the step size.

26

Updating the parameter values

Back-propagate the error. Given parameters w , b:

• Step 1: Forward-propagate to find zk in terms of the input (the

“feed-forward signals”).

• Step 2: Calculate output error E by comparing the predicted output

zk to its true value tk .

• Step 3: Back-propagate E by weighting it by the gradients of the

associated activation functions and the weights in previous layers.

• Step 4: Calculate the gradients ∂E
∂w and ∂E

∂b for the parameters w , b

at each layer based on the backpropagated error signal and the

feedforward signals from the inputs.

• Step 5: Update the parameters using the calculated gradients

w ← w − η ∂E
∂w , b ← b − η ∂E

∂b where η is the step size.

26

Illustrative example

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• wij : weights connecting node i in layer (`− 1) to node j in layer `.

• bj , bk : bias for nodes j and k .

• uj , uk : inputs to nodes j and k (where uj = bj +
∑

i xiwij).

• gj , gk : activation function for node j (applied to uj) and node k.

• yj = gj(uj), zk = gk(uk): output/activation of nodes j and k.

• tk : target value for node k in the output layer.

27

Illustrative example (steps 1 and 2)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 1: Forward-propagate for each output zk .

zk = gk(uk) = gk(bk +
∑
j

yjwjk) = gk(bk +
∑
j

gj(bj +
∑
i

xiwij)wjk)

• Step 2: Find the error. Let’s assume that the error function is the

sum of the squared differences between the target values tk and the

network output zk : E = 1
2

∑
k∈K (zk − tk)2.

28

Illustrative example (steps 1 and 2)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 1: Forward-propagate for each output zk .

zk = gk(uk) = gk(bk +
∑
j

yjwjk) = gk(bk +
∑
j

gj(bj +
∑
i

xiwij)wjk)

• Step 2: Find the error. Let’s assume that the error function is the

sum of the squared differences between the target values tk and the

network output zk : E = 1
2

∑
k∈K (zk − tk)2.

28

Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk = (zk − tk)g ′k(uk)yj = δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

29

Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk = (zk − tk)g ′k(uk)yj = δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

29

Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk = (zk − tk)g ′k(uk)yj = δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

29

Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk

= (zk − tk)g ′k(uk)yj = δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

29

Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk = (zk − tk)g ′k(uk)yj

= δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

29

Illustrative example (step 3, output layer)

zk

yj
xi

wij wjk

uk zk

Nodes in the output layer

Apply gk to uk

Step 3: Backpropagate the error. Let’s start at the output layer with

weight wjk , recalling that E = 1
2

∑
k∈K (zk − tk)2, uk = bk +

∑
j wjkyj :

∂E

∂wjk
=
∂E

∂zk

∂zk
∂uk

∂uk
∂wjk

= (zk − tk)
∂zk
∂uk

∂uk
∂wjk

= (zk − tk)g ′k(uk)
∂

∂wjk
uk = (zk − tk)g ′k(uk)yj = δkyj

where δk = (zk − tk)g ′k(uk) is called the error in uk .

29

Illustrative example (step 3, hidden layer)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Step 3 (cont’d): Now let’s consider wij in the hidden layer, recalling

uj = bi +
∑

i xiwij , uk = bk +
∑

j gj(uj)wjk , zk = gk(uk):

∂E

∂wij
=

∑
k∈K

∂E

∂uk

∂uk
∂yj

∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjk
∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjkg
′
j (uj)xi = δjxi

where we substituted δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk , the error in uj .

30

Illustrative example (step 3, hidden layer)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Step 3 (cont’d): Now let’s consider wij in the hidden layer, recalling

uj = bi +
∑

i xiwij , uk = bk +
∑

j gj(uj)wjk , zk = gk(uk):

∂E

∂wij
=

∑
k∈K

∂E

∂uk

∂uk
∂yj

∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjk
∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjkg
′
j (uj)xi = δjxi

where we substituted δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk , the error in uj .

30

Illustrative example (step 3, hidden layer)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Step 3 (cont’d): Now let’s consider wij in the hidden layer, recalling

uj = bi +
∑

i xiwij , uk = bk +
∑

j gj(uj)wjk , zk = gk(uk):

∂E

∂wij
=

∑
k∈K

∂E

∂uk

∂uk
∂yj

∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjk
∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjkg
′
j (uj)xi

= δjxi

where we substituted δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk , the error in uj .

30

Illustrative example (step 3, hidden layer)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Step 3 (cont’d): Now let’s consider wij in the hidden layer, recalling

uj = bi +
∑

i xiwij , uk = bk +
∑

j gj(uj)wjk , zk = gk(uk):

∂E

∂wij
=

∑
k∈K

∂E

∂uk

∂uk
∂yj

∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjk
∂yj
∂uj

∂uj
∂wij

=
∑
k∈K

δkwjkg
′
j (uj)xi = δjxi

where we substituted δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk , the error in uj .

30

Illustrative example (steps 3 and 4)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 3 (cont’d): We similarly find that ∂E
∂bk

= δk , ∂E
∂bj

= δj .

• Step 4: Calculate the gradients. We have found that

∂E

∂wij
= δjxi and

∂E

∂wjk
= δkyj .

where δk = (zk − tk)g ′k(uk), δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk .

Now since we know the zk , yj , xi , uk and uj for a given set of

parameter values w , b, we can use these expressions to calculate the

gradients at each iteration and update them.

31

Illustrative example (steps 3 and 4)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 3 (cont’d): We similarly find that ∂E
∂bk

= δk , ∂E
∂bj

= δj .

• Step 4: Calculate the gradients. We have found that

∂E

∂wij
= δjxi and

∂E

∂wjk
= δkyj .

where δk = (zk − tk)g ′k(uk), δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk .

Now since we know the zk , yj , xi , uk and uj for a given set of

parameter values w , b, we can use these expressions to calculate the

gradients at each iteration and update them.

31

Illustrative example (steps 3 and 4)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 3 (cont’d): We similarly find that ∂E
∂bk

= δk , ∂E
∂bj

= δj .

• Step 4: Calculate the gradients. We have found that

∂E

∂wij
= δjxi and

∂E

∂wjk
= δkyj .

where δk = (zk − tk)g ′k(uk), δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk .

Now since we know the zk , yj , xi , uk and uj for a given set of

parameter values w , b, we can use these expressions to calculate the

gradients at each iteration and update them.
31

Illustrative example (steps 4 and 5)

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• Step 4: Calculate the gradients. We have found that

∂E

∂wij
= δjxi and

∂E

∂wjk
= δkyj .

where δk = (zk − tk)g ′k(uk), δj = g ′j (uj)
∑

k∈K (zk − tk)g ′k(uk)wjk .

• Step 5: Update the weights and biases with learning rate η. For

example

wjk ← wjk − η
∂E

∂wjk
and wij ← wij − η

∂E

∂wij
32

High-level Procedure: Can be Used with More Hidden Layers

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Final Layer

• Error in each of its outputs is zk − tk .

• Error in input uk to the final layer is δk = g ′k(uk)(zk − tk)

Hidden Layer

• Error in output yj is
∑

k∈K δkwjk .

• Error in the input uj of the hidden layer is δj = g ′j (uj)
∑

k∈K δkwjk

The gradient w.r.t. wij is xiδj .

33

High-level Procedure: Can be Used with More Hidden Layers

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Final Layer

• Error in each of its outputs is zk − tk .

• Error in input uk to the final layer is δk = g ′k(uk)(zk − tk)

Hidden Layer

• Error in output yj is
∑

k∈K δkwjk .

• Error in the input uj of the hidden layer is δj = g ′j (uj)
∑

k∈K δkwjk

The gradient w.r.t. wij is xiδj .
33

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Suppose the output z = 0.9 but the target is 1. Perform backpropagation

and compute the gradient of error w.r.t. the weight connecting x and y2.

Forward-propagation

• y1 = σ(0.5x + 1) and y2 = σ(x + 0.5)

• Input to last layer u = 0.5y1 + 0.5y2 + 0.25

• Final Output z = σ(u)

34

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Suppose the output z = 0.9 but the target is 1. Perform backpropagation

and compute the gradient of error w.r.t. the weight connecting x and y2.

Forward-propagation

• y1 = σ(0.5x + 1) and y2 = σ(x + 0.5)

• Input to last layer u = 0.5y1 + 0.5y2 + 0.25

• Final Output z = σ(u)

34

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Final layer

• Error in output z is 0.9− 1 = −0.1

• Error in input u is −0.1× σ′(u)

35

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Final layer

• Error in output z is 0.9− 1 = −0.1

• Error in input u is −0.1× σ′(u)

35

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• Error in y1 is −0.1× σ′(u)× 0.5

• Error in y2 is −0.1× σ′(u)× 0.5

• Error in u2 is −0.1× σ′(u)× 0.5× σ′(u2)

The gradient w.r.t. the weight connecting x and y2 is

−0.1× σ′(u)× 0.5× σ′(u2)× x

36

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• Error in y1 is −0.1× σ′(u)× 0.5

• Error in y2 is −0.1× σ′(u)× 0.5

• Error in u2 is −0.1× σ′(u)× 0.5× σ′(u2)

The gradient w.r.t. the weight connecting x and y2 is

−0.1× σ′(u)× 0.5× σ′(u2)× x

36

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• Error in y1 is −0.1× σ′(u)× 0.5

• Error in y2 is −0.1× σ′(u)× 0.5

• Error in u2 is −0.1× σ′(u)× 0.5× σ′(u2)

The gradient w.r.t. the weight connecting x and y2 is

−0.1× σ′(u)× 0.5× σ′(u2)× x

36

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• Error in y1 is −0.1× σ′(u)× 0.5

• Error in y2 is −0.1× σ′(u)× 0.5

• Error in u2 is −0.1× σ′(u)× 0.5× σ′(u2)

The gradient w.r.t. the weight connecting x and y2 is

−0.1× σ′(u)× 0.5× σ′(u2)× x

36

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• Error in y1 is −0.1× σ′(u)× 0.5

• Error in y2 is −0.1× σ′(u)× 0.5

• Error in u2 is −0.1× σ′(u)× 0.5× σ′(u2)

The gradient w.r.t. the weight connecting x and y2 is

−0.1× σ′(u)× 0.5× σ′(u2)× x

36

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• Error in y1 is −0.1× σ′(u)× 0.5

• Error in y2 is −0.1× σ′(u)× 0.5

• Error in u2 is −0.1× σ′(u)× 0.5× σ′(u2)

The gradient w.r.t. the weight connecting x and y2 is

−0.1× σ′(u)× 0.5× σ′(u2)× x

36

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• The gradient w.r.t. the weight connecting x and y2 is

∂E

∂w
= −0.1× σ′(u)× 0.5× σ′(u2)× x

• Thus, we will update the weight as

w ← w − η ∂E
∂w

37

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• The gradient w.r.t. the weight connecting x and y2 is

∂E

∂w
= −0.1× σ′(u)× 0.5× σ′(u2)× x

• Thus, we will update the weight as

w ← w − η ∂E
∂w

37

Exercise: Back-Propagation

x
y1

1

1

0.5

y2 z

1
1

0.5

0.5

0.25

0.5

Hidden Layer

• The gradient w.r.t. the weight connecting x and y2 is

∂E

∂w
= −0.1× σ′(u)× 0.5× σ′(u2)× x

• Thus, we will update the weight as

w ← w − η ∂E
∂w

37

Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation

• Represent the weights between layers l − 1 and l as a matrix W(l)

• Outputs of layer l − 1 are in a row vector y(l−1). Then we have

u(l) = y(l−1)W(l).

• Outputs of layer l are in the row vector y(l) = g(u(l)).

38

Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation

• Represent the weights between layers l − 1 and l as a matrix W(l)

• Outputs of layer l − 1 are in a row vector y(l−1). Then we have

u(l) = y(l−1)W(l).

• Outputs of layer l are in the row vector y(l) = g(u(l)).

38

Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Forward-Propagation

• Represent the weights between layers l − 1 and l as a matrix W(l)

• Outputs of layer l − 1 are in a row vector y(l−1). Then we have

u(l) = y(l−1)W(l).

• Outputs of layer l are in the row vector y(l) = g(u(l)).

38

Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find ∆(l), the vector of errors in u(l) in terms of the

final error

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

39

Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find ∆(l), the vector of errors in u(l) in terms of the

final error

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

39

Vectorized Implementation

Much faster than implementing a loop over all neurons in each layer

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

Back-Propagation

• For each layer l find ∆(l), the vector of errors in u(l) in terms of the

final error

• Update weights W(l) using ∆(l)

• Recursively find ∆(l−1) in terms ∆(l)

39

Optimizing SGD Parameters for

Faster Convergence

Mini-batch SGD

• Recall the empirical risk loss function that we considered for the

backpropagation discussion

E =
N∑

n=1

1

2
(f (xn)− tn)2

• For large training datasets (large N), then computing gradients with

respect to each datapoint is expensive. For example, for the last

year, the batch gradients are

∂E

∂wjk
=

N∑
n=1

(zk − tk)

• Therefore we use stochastic gradient descent (SGD), where we

choose a random data point xn and use E = 1
2 (f (xn)− tn)2 instead

of the entire sum

40

Mini-batch SGD

• Recall the empirical risk loss function that we considered for the

backpropagation discussion

E =
N∑

n=1

1

2
(f (xn)− tn)2

• For large training datasets (large N), then computing gradients with

respect to each datapoint is expensive. For example, for the last

year, the batch gradients are

∂E

∂wjk
=

N∑
n=1

(zk − tk)

• Therefore we use stochastic gradient descent (SGD), where we

choose a random data point xn and use E = 1
2 (f (xn)− tn)2 instead

of the entire sum

40

Mini-batch SGD

• Recall the empirical risk loss function that we considered for the

backpropagation discussion

E =
N∑

n=1

1

2
(f (xn)− tn)2

• For large training datasets (large N), then computing gradients with

respect to each datapoint is expensive. For example, for the last

year, the batch gradients are

∂E

∂wjk
=

N∑
n=1

(zk − tk)

• Therefore we use stochastic gradient descent (SGD), where we

choose a random data point xn and use E = 1
2 (f (xn)− tn)2 instead

of the entire sum

40

Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and gives better error convergence,

but increases computing cost per iteration

41

Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and gives better error convergence,

but increases computing cost per iteration

41

Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and gives better error convergence,

but increases computing cost per iteration

41

Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and gives better error convergence,

but increases computing cost per iteration

41

Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and typically gives better error

convergence, but increases computing cost per iteration

42

Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and typically gives better error

convergence, but increases computing cost per iteration

42

Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and typically gives better error

convergence, but increases computing cost per iteration

42

Mini-batch SGD

• Mini-batch SGD is in between these two extremes

• In each iteration, we choose a set S of m samples from the N

training samples and use

E =
∑
n∈S

1

2
(f (xn)− tn)2

for backpropagation

• Small m saves per-iteration computing cost, but increases noise in

the gradients and yields worse error convergence

• Large m reduces gradient noise and typically gives better error

convergence, but increases computing cost per iteration

42

How to Choose Mini-batch size

• Small training datasets – use batch gradient descent m = N

• Large training datasets – typical m are 64, 128, 256 ... whatever fits

in the CPU/GPU memory

• Mini-batch size is another hyperparameter that you have to tune

Image source: https://github.com/buomsoo-kim/

Machine-learning-toolkits-with-python

43

https://github.com/buomsoo-kim/Machine-learning-toolkits-with-python
https://github.com/buomsoo-kim/Machine-learning-toolkits-with-python

Learning Rate

• SGD Update Rule

w (t+1) = w (t) − η ∂E

∂w (t)
= w (t) − η∇E (w (t))

• Large η; Faster convergence, but higher error floor (the flat portion

of each curve)

• Small η: Slow convergence, but lower error floor (the blue curve will

eventually go below the red curve)

• To get the best of both worlds, decay η over time

Image Source: https://towardsdatascience.com/

understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

44

https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

Summary

You should know:

• Multi-layer neural network architecture – typical choices of

activation functions and loss functions.

• How to perform inference on a trained network using forward

propagation

• How to train a neural network using the back-propagation algorithm.

• Effect of learning rate and mini-batch size on training speed and

accuracy

Next class

• More optimizing neural network training

• Other types of neural networks

45

	Review: Neural networks Motivation
	Review: Single Neuron Models
	Review: Multi-layer Neural Network
	Inference using a Trained Network: Forward Propagation
	Training a Neural Network: Backpropagatiopn
	Optimizing SGD Parameters for Faster Convergence

