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Midterm Information

Midterm will be on Wednesday, 2/26. SV and Pittsburgh students will

take the midterm in class (the usual room and time). Kigali students will

take the midterm at 6:00pm local time.

• Closed-book except for one double-sided letter-size handwritten page

of notes.

• We will provide formulas for relevant probability distributions.

• You will not need a calculator. Only pens/pencils, erasers, and

scratch paper are allowed.

Will cover all topics presented through Wednesday in class.

• (1) point estimation/MLE/MAP, (2) linear regression, (3) naive

Bayes, (4) logistic regression, and (5) SVMs.

• Understand all homework questions and derivations in

lecture/recitation, as well as practice exam questions.
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Midterm: Concepts That You Should Know

This is a quick overview of the most important concepts/methods/models

that you should expect to see on the midterm.

• MLE/MAP: how to find the likelihood of one or more observations

given a system model, how to incorporate knowledge of a prior

distribution, how to optimize the likelihood, loss functions

• Linear regression: how to formulate the linear regression optimization

problem, how it relates to MLE/MAP, ridge regression, overfitting

and regularization, gradient descent, bias-variance trade-off

• Naive Bayes: Bayes’ rule, naive classification rule, why it is naive

• Logistic regression: how to formulate logistic regression, how it

relates to MLE, comparison to naive Bayes, sigmoid function,

softmax function, cross-entropy function

• SVMs: hinge loss formulation, max-margin formulation, dual of the

SVM problem, kernel functions
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Outline

1. Review of Kernel SVMs

2. Nearest Neighbor Classifier

3. Practical Aspects of NN
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Review of Kernel SVMs



Primal and Dual SVM Formulations: Kernel Versions

Primal formulation

min
w ,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w>φ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Dual formulation

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)>φ(xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• φ(x) is the feature vector for the data x;

• In the dual problem, we only need to know φ(xm)>φ(xn).
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Dual Kernel SVM

We replace the inner products φ(xm)>φ(xn) with a kernel function

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm, xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• k(xm, xn) is a scalar and it is independent of the dimension of the

feature vector φ(x).

• k(xm, xn) roughly measures the similarity of xm and xn.

• k(xm, xn) is a kernel function if it is symmetric and positive-definite

(k(x, x) > 0 for all x > 0).
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Test prediction

Learning w and b:

w =
∑
n

αnynφ(xn)

b = yn −w>φ(xn) = yn −
∑
m

αmymk(xm, xn)

But for test prediction on a new point x, do we need the form of φ(x) in

order to find the sign of w>φ(x) + b? Fortunately, no!

Test Prediction:

h(x) = sign(
∑
n

ynαnk(xn, x) + b)

At test time it suffices to know the kernel function! So we really do not

need to know φ.
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

The linear decision boundary is pretty bad

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Use kernel φ(x) = [x1, x2, x
2
1 + x22 ] to transform the data in a 3D space

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Then find the decision boundary. How? Solve the Dual problem

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)>φ(xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

Then find w and b. Predict y = sign(wTφ(x) + b).
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Here is the resulting decision boundary

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

In general, you don’t need to concretely define φ(x). In the dual problem

we can just use the kernel function k(xm, xn). For cases where φ(x) is

concretely defined, k(xm, xn) = φ(xm)Tφ(xn).

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)>φ(xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0
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Advantages of SVM

SVM

1. Is less sensitive to outliers.

2. Maximizes distance of training data from the boundary

3. Generalizes well to many nonlinear models.

4. Only requires a subset of the training points.

5. Scales better with high-dimensional data.
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Outline

1. Review of Kernel SVMs

2. Nearest Neighbor Classifier

3. Practical Aspects of NN
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Parametric vs. Nonparametric

• So far, we’ve discussed parametric machine learning models:

• Linear regression

• Naive Bayes

• Logistic regression

• Linear SVMs

• Now we will discuss two nonparametric models:

• Nearest neighbors

• Decision trees
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Parametric vs. Nonparametric

Key difference:

• Parametric models assume that the data can be characterized via

some fixed set of parameters θ. Given this set of parameters, our

future predictions are independent of the data D, i.e.,

P(x |θ,D) = P(x |θ).

• Often simpler and faster to learn, but can sometimes be a poor fit

• Nonparametric models instead assume that the model features

depend on the data D. The number of features tends to grow with

the size of the dataset.

• More complex and expensive, but can learn more flexible patterns

• Both parametric and non-parametric methods can be used for either

regression or classification.

15



Outline

1. Review of Kernel SVMs

2. Nearest Neighbor Classifier

3. Practical Aspects of NN
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Nearest Neighbor Classifier



Recognizing flowers

Types of Iris: setosa, versicolor, and virginica

17



Measuring the properties of the flowers

Features: the widths and lengths of sepal and petal

18



Often, data is conveniently organized as a table

Ex: Iris data (click here for all data)

• 4 features

• 3 classes
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Pairwise scatter plots of 131 flower specimens

Visualization of data helps to identify the right learning model

Which combination of features separates the three classes?

Figure 1: Each colored point is a flower specimen: setosa, versicolor, virginica
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Different types seem well-clustered and separable

Using two features: petal width and sepal length
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Labeling an unknown flower type
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Closer to red cluster: so labeling it as setosa
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Multi-class classification

Classify data into one of the multiple categories

• Input (feature vectors): x ∈ RD

• Output (label): y ∈ [C] = {1, 2, · · · ,C}
• Learning goal: y = f (x)

Recall special case: binary classification

• Number of classes: C = 2

• Labels: {0, 1} or {−1,+1}
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More terminology

Training data (set)

• N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
• They are used for learning f (·)

Test (evaluation) data

• M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
• They are used for assessing how well f (·) will do in predicting an

unseen x /∈ Dtrain

Training data and test data should not overlap: Dtrain ∩ Dtest = ∅
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Nearest neighbor classification (NNC)

Nearest neighbor of a (training or test) data point

x(1) = xnn(x)

where nn(x) ∈ [N] = {1, 2, · · · ,N}, i.e., the index to one of the training

instances

nn(x) = argminn∈[N] ‖x − xn‖22 = argminn∈[N]

D∑
d=1

(xd − xnd)2

Classification rule

y = f (x) = ynn(x)

Example: if nn(x) = 2, then

ynn(x) = y2,

which is the label of the 2nd data point.
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Visual example

In this 2-dimensional example, the nearest point to x is a red training

instance, thus, x will be labeled as red.

x1

x2

(a)
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Example: classify Iris with two features

Training data

ID (n) petal width (x1) sepal length (x2) category (y)

1 0.2 5.1 setosa

2 1.4 7.0 versicolor

3 2.5 6.7 virginica

Flower with unknown category

petal width = 1.8 and sepal length = 6.4

Calculating distance from (x1, x2) to (xn1, xn2): (x1 − xn1)2 + (x2 − xn2)2

ID distance

1 4.25

2 0.52

3 0.58

Thus, the predicted category is 2 (versicolor)
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How to measure “nearness” with other distances?

Previously, we used the Euclidean

distance

nn(x) = argminn∈[N] ‖x − xn‖22

We can also use alternative distances

E.g., the following L1 distance (i.e., city

block distance, or Manhattan distance)

nn(x) = argminn∈[N] ‖x − xn‖1

= argminn∈[N]

D∑
d=1

|xd − xnd |
Figure 2: Green line is

Euclidean distance. Red, Blue,

and Yellow lines are L1 distance
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Decision boundary

For every point in the space, we can determine its label using the NNC

rule. This gives rise to a decision boundary that partitions the space into

different regions.

x1

x2

(b)
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Recall: Multi-class Classification

x1 

x 2
 

+ Pr(Square) = 0.6 

+ 

Pr(Circle) = 0.75 

Pr(Triangle) = 0.2 

Previously, we learned a multi-class classifier by combining binary, linear

decision boundaries to partition the feature space.
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Parametric vs. Nonparametric, Revisited

Nonparametric models instead assume that the model features depend on

the data D. The number of features tends to grow with the size of the

dataset.

• Parametric models are often simpler and faster to learn, but can

sometimes be a poor fit

• Nonparametric models are more complex and expensive, but can

learn more flexible patterns

How does this manifest for nearest neighbors?

• Nearest neighbors often learns a highly nonlinear decision boundary.

• But, we need to compare the test data point to every sample in the

training dataset.
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K-nearest neighbor (KNN) classification

Increase the number of nearest neighbors to use?

• 1-nearest neighbor: nn1(x) = argminn∈[N] ‖x − xn‖22
• 2nd-nearest neighbor: nn2(x) = argminn∈[N]−nn1(x) ‖x − xn‖22
• 3rd-nearest neighbor: nn2(x) = argminn∈[N]−nn1(x)−nn2(x) ‖x − xn‖22

The set of K-nearest neighbors

knn(x) = {nn1(x), nn2(x), · · · , nnK (x)}

Let x(k) = xnnk (x), then

‖x − x(1)‖22 ≤ ‖x − x(2)‖22 · · · ≤ ‖x − x(K )‖22
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How to classify with K neighbors?

Classification rule

• Every neighbor votes: suppose yn (the true label) for xn is c , then

• vote for c is 1

• vote for c ′ 6= c is 0

We use the indicator function I(yn == c) to represent the votes.

• Aggregate everyone’s vote

vc =
∑

n∈knn(x)

I(yn == c), ∀ c ∈ [C]

• Label with the majority, breaking ties arbitrarily

y = f (x) = arg maxc∈[C] vc
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Example

K=1, Label: ??

x1

x2

(a)

K=3, Label: ??

x1

x2

(a)

K=5, Label: ??

x1

x2

(a)
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Example

K=1, Label: red

x1

x2

(a)

K=3, Label: red

x1

x2

(a)

K=5, Label: blue

x1

x2

(a)
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How to choose an optimal K?

x6

x7

K = 1

0 1 2
0

1

2

x6

x7

K = 3

0 1 2
0

1

2

x6

x7

K = 31

0 1 2
0

1

2

When K increases, the decision boundary becomes smooth.
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Why use nearest neighbors?

Advantages of NNC

• Computationally, simple and easy to implement – just compute

distances, no optimization required

• Can learn complex decision boundaries

Disadvantages of NNC

• Computationally intensive for large-scale problems: O(ND) for

labeling a data point

• We need to “carry” the training data around. Without it, we cannot

do classification. This type of method is called nonparametric.

• Choosing the right distance measure and K can be difficult.
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Practical Aspects of NN



Hyperparameters in NN

Two crucial choices for NN

• Choosing K , i.e., the number of nearest neighbors (default is 1)

• Choosing the right distance measure (default is Euclidean distance),

for example, from the following generalized distance measure

‖x − xn‖p =

(∑
d

|xd − xnd |p
)1/p

for p ≥ 1.

These are not specified by the algorithm itself — resolving them requires

empirical studies and are task/dataset-specific.
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Hyperparameter tuning on a validation dataset

Training data

• N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
• They are used for learning f (·)

Test data

• M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
• They are used for assessing how well f (·) will do in predicting an

unseen x /∈ Dtrain

Validation data

• L samples/instances: Dval = {(x1, y1), (x2, y2), · · · , (xL, yL)}
• They are used to optimize hyperparameter(s).

Training data, validation and test data should not overlap!
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Recipe

• For each possible value of the hyperparameter (say

K = 1, 3, · · · , 100)

• Train a model using Dtrain (we don’t need this step for NNC)

• Evaluate the performance of the model on Dval

• Choose the model with the best performance on Dval

• Evaluate the model on Dtest
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Cross-validation

What if we do not have validation data?

• We split the training data into

S equal parts.

• We use each part in turn as a

validation dataset and use the

others as a training dataset.

• We choose the hyperparameter

such that the model performs

the best (based on average,

variance, etc.)

• We re-train the model on the

full training dataset with the

best hyperparameter.

Figure 3: S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.
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But how do we choose the distances?

Distances depend on units of the features!
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Preprocess data

Normalize data to have zero mean and unit standard deviation in

each dimension

• Compute the means and standard deviations in each feature

x̄d =
1

N

∑
n

xnd , s2d =
1

N − 1

∑
n

(xnd − x̄d)2

• Scale the feature accordingly

xnd ←
xnd − x̄d

sd

Many other ways of normalizing data — you would need/want to try

different ones and pick among them using (cross) validation

43



Summary so far

• Described a simple nonparametric learning algorithm

• Discussed a few practical aspects, such as tuning hyperparameters,

with cross-validation – you will get experience with this in your

homework!

Good luck with the midterm!

44


	Review of Kernel SVMs
	Nearest Neighbor Classifier
	Practical Aspects of NN

