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Announcements

• Python tutorial will be held tomorrow (Thursday, 2/6) at 1:30pm

ET in WEH 5312. Zoom link will be provided if you cannot attend

in person, and we will post the materials on Piazza.

• Recitation on Friday will cover practical considerations for

implementing logistic regression, using a digit recognition dataset.

Please download the associated Jupyter notebook (to be posted

later today) so you can follow along.

• The midterm exam (20% of your grade) will be an in-class exam on

2/26. It will be closed-book and paper-based; more details to come.
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Outline

1. Review of Naive Bayes

2. Logistic Regression Model

3. Loss Function and Parameter Estimation

4. Gradient Descent
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Review of Naive Bayes



How to identify spam emails?
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Bag of words model
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Weighted sum of those telltale words
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Intuitive approach

• Class label: binary

• y ={ spam, ham }

• Features: word counts in the document (bag-of-words)

• x = {(‘free’, 100), (‘lottery’, 5), (‘money’, 10)}
• Each pair is in the format of (wi , #wi ), namely, a unique word in the

dictionary, and the number of times it shows up

• Assign weight to each word

• Let s:= spam weights, h:= ham weights
• Compute compatibility score of spam

• (# “free” ×sfree)+( # “account” ×saccount)+(# “money” ×smoney)

• Compute compatibility score of ham

• (# “free” ×hfree)+( # “account” ×haccount)+(# “money” ×hmoney)

• Make a decision

• if spam score > ham score then spam

• else ham
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Bayes classification rule

MAP rule: For any document x, we want to compare

p(spam|x) versus p(ham|x)

Recall that by Bayes rule we have:

p(spam|x) =
p(x|spam)p(spam)

p(x)

p(ham|x) =
p(x|ham)p(ham)

p(x)

Denominators are same, and easier to compute logarithms, so instead we

compare:

log[p(x|spam)p(spam)] versus log[p(x|ham)p(ham)]
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Naive Bayes Classification Rule

The Naive Bayes assumption: conditional independence of features

p(x|spam) = p(‘free′|spam)100p(‘lottery ′|spam)5p(‘money ′|spam)10 · · ·

The decision score becomes:

log[p(x|spam)p(spam)] = log

[∏
i

p(wordi |spam)xip(spam)

]
=
∑
i

xi log p(wordi |spam)︸ ︷︷ ︸
weights

+ log p(spam)

Similarly, we have

log[p(x|ham)p(ham)] =
∑
i

xi log p(wordi |ham) + log p(ham)

Comparing these log likelihoods. If∑
i

xi log p(wordi |spam)+log p(spam) >
∑
i

xi log p(wordi |ham)+log p(ham)

then declare the email as ’spam’ 8



Estimating the conditional and prior probabilities

• Collect a lot of ham and spam emails as training examples

• Estimate the “prior”

p(ham) =
#of ham emails

#of emails
, p(spam) =

#of spam emails

#of emails

• Estimate the weights, e.g., p(funny word|ham)

p(funny word|ham) =
#of funny word in ham emails

#of words in ham emails

p(funny word|spam) =
#of funny word in spam emails

#of words in spam emails

• Use Laplacian smoothing to avoid these probabilities being 0 for any

word
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Laplacian smoothing

• If a word has 0 probability within a class, naive Bayes will never put

an email with that word into that class.

• Introduce pseudo-counts by pretending you saw each word α times

in each class.

p(funny word|spam) =
#of funny word in spam emails + α

#of words in spam emails + α×#of unique words

Effect of Laplacian smoothing diminishes with more training data.
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Logistic Regression Model



How does naive Bayes work?

Examine the classification rule for naive Bayes

y∗ = arg maxc

(
log πc +

∑
k

xk log θck

)

For binary classification, we thus determine the label based on the sign of

log π1 +
∑
k

xk log θ1k −

(
log π2 +

∑
k

xk log θ2k

)

This is just a linear function of the features (word-counts) {xk}

w0 +
∑
k

xkwk

where we “absorb” w0 = log π1 − log π2 and wk = log θ1k − log θ2k .
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Intuition: Logistic Regression

Learn the equation of the decision boundary w>x = 0 such that

• If w>x ≥ 0 declare y = 1 (cat)

• If w>x < 0 declare y = 0 (dog)

classificationdata intelligence

= ??

y = 0 for dog, y = 1 for cat
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Back to spam vs. ham classification...

• x1 = # of times ’meet’ appears in an email

• x2 = # of times ’lottery’ appears in an email

• Define feature vector x = [1, x1, x2]

• Learn the decision boundary w0 + w1x1 + w2x2 = 0 such that

• If w>x ≥ 0 declare y = 1 (spam)

• If w>x < 0 declare y = 0 (ham)

x1: occurrences of ‘meet’

x 2
: o

cc
ur

re
nc

es
 o

f ‘
lo

tte
ry

’

w0 + w1 x1 + w2 x2 = 0

Key Idea: If ’meet’ appears few times and ’lottery’ appears many times

than the email is spam
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Visualizing a linear classifier

• x1 = # of times ’lottery’ appears in an email

• x2 = # of times ’meet’ appears in an email

• Define feature vector x = [1, x1, x2]

• Learn the decision boundary w0 + w1x1 + w2x2 = 0 such that

• If w>x ≥ 0 declare y = 1 (spam)

• If w>x < 0 declare y = 0 (ham)

SPAMHAM

1

0 wTx, Linear 
comb. of features

Predicted 
label 

y = 1 for spam, y = 0 for ham
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Your turn

Suppose you see the following email:

CONGRATULATIONS!! Your email address have won you the

lottery sum of US$2,500,000.00 USD to claim your prize,

contact your office agent (Athur walter) via email

claims2155@yahoo.com.hk or call +44 704 575 1113

Keywords are [lottery, prize, office, email]

The given weight vector is w = [0.3, 0.3,−0.1,−0.04]>

Will we predict that the email is spam or ham?

x = [1, 1, 1, 2]>

w>x = 0.3 ∗ 1 + 0.3 ∗ 1− 0.1 ∗ 1− 0.04 ∗ 2 = 0.42 > 0

so we predict spam!
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Intuition: Logistic Regression

• Suppose we want to output the probability of an email being

spam/ham instead of just 0 or 1

• This gives information about the confidence in the decision

• Use a function σ(w>x) that maps w>x to a value between 0 and 1

SPAMHAM

1

0 wTx, Linear 
comb. of features

Prob(y= 1|x)

Probability that predicted label is 1 (spam)

Key Problem: Finding optimal weights w that accurately predict this

probability for a new email 17



Formal Setup: Binary Logistic Classification

• Input/features: x = [1, x1, x2, . . . xD ] ∈ RD+1

• Output: y ∈ {0, 1}
• Training data: D = {(xn, yn), n = 1, 2, . . . ,N}
• Model:

p(y = 1|x ; w) = σ[g(x)]

where

g(x) = w0 +
∑
d

wdxd = w>x

and σ[·] stands for the sigmoid function

σ(a) =
1

1 + e−a
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Why the sigmoid function?

What does it look like?

σ(a) =
1

1 + e−a

where

a = w>x
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Sigmoid properties

• Bounded between 0 and 1 ← thus, interpretable as probability

• Monotonically increasing ← thus, usable to derive classification rules

• σ(a) ≥ 0.5, positive (classify as ’1’)

• σ(a) < 0.5, negative (classify as ’0’)

• Nice computational properties ← as we will see soon
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Comparison to Linear Regression

Sigmoid function returns values in [0,1]

Decision boundary is linear
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Your turn

Suppose you see the following email:

CONGRATULATIONS!! Your email address have won you the

lottery sum of US$2,500,000.00 USD to claim your prize,

contact your office agent (Athur walter) via email

claims2155@yahoo.com.hk or call +44 704 575 1113

Keywords are [lottery, prize, office, email]

The given weight vector is w = [0.3, 0.3,−0.1,−0.04]>

What is the probability that the email is spam?

x = [1, 1, 1, 2]>

w>x = 0.3 ∗ 1 + 0.3 ∗ 1− 0.1 ∗ 1− 0.04 ∗ 2 = 0.42 > 0

Pr(y = 1|x) = σ(w>x) =
1

1 + e−0.42
= 0.603
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Loss Function and Parameter

Estimation



How do we optimize the weight vector w?

Learn from experience

• get a lot of spams

• get a lot of hams

But what to optimize?
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Likelihood function

Probability of a single training sample (xn, yn)...

p(yn|xn; w) =

{
σ(w>xn) if yn = 1

1− σ(w>xn) otherwise

Simplify, using the fact that yn is either 1 or 0

p(yn|xn; w) = σ(w>xn)yn [1− σ(w>xn)]1−yn

SPAMHAM

1

0 wTx, Linear 
comb. of features

Prob(y= 1|x)

Probability that predicted label is 1 (spam)
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Log Likelihood or Cross Entropy Error

Log-likelihood of the whole training data D

P(D) =
N∏

n=1

p(yn|xn; w) =
N∏

n=1

{
σ(w>xn)yn [1− σ(w>xn)]1−yn

}
logP(D) =

∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

It is convenient to work with its negation, which is called the

cross-entropy error function

E(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}
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How to find the optimal parameters for logistic regression?

We will minimize the error function

E(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

However, this function is complex and we cannot find the simple solution

as we did in Naive Bayes. So we need to use numerical methods.

• Numerical methods are messier, in contrast to cleaner closed-form

solutions.

• In practice, we often have to tune a few optimization parameters —

patience is necessary.

• A popular method: gradient descent and its variants.

25



Gradient Descent



Gradient descent algorithm

Start at a random point

w

f(w)

w* w

f(w)

w0w*
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Gradient descent algorithm

Start at a random point.

Repeat:

• Determine a descent direction.

w

f(w)

w0w*
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Gradient descent algorithm

Start at a random point.

Repeat:

• Determine a descent direction.

• Choose a step size.

w

f(w)

w0w*
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Gradient descent algorithm

Start at a random point.

Repeat:

• Determine a descent direction.

• Choose a step size.

• Update.

w

f(w)

w1 w0w* w

f(w)

w1 w0w* w

f(w)

w1 w0w* w

f(w)

w1 w0w* w

f(w)

w2 w1 w0w*
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Gradient descent algorithm

Start at a random point.

Repeat:

• Determine a descent direction.

• Choose a step size.

• Update.

Until stopping criterion is reached. w

f(w)

w* … w

f(w)

w* … w2 w1 w0
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Can we converge to the optimum?

Gradient descent (with proper step size) converges to the global optimum

for when minimizing a convex function.

w

f(w)

w*

…

Convex

Any local minimum is also a global

minimum.

w

g(w) Non-convex

…

…

w*w!

Multiple local minima may exist.

Linear regression, ridge regression, and logistic regression are all convex!
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Convexity

A function f : Rk → R is convex if for any x , z ∈ Rk and t ∈ [0, 1],

f (tx + (1− t)z)︸ ︷︷ ︸
Function value at a point between x and z.

≤ tf (x) + (1− t)f (z)︸ ︷︷ ︸
Line drawn between f (x) and f (z)

.

• f always lies below a line drawn between two of its points.

• If it exists, the Hessian d2f
dx2 is a positive-(semi)definite matrix.

w

f(w) Convex

…

x z w

g(w) Non-convex
…

…

x z
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Can we converge to the optimum?

Gradient descent (with proper step size) converges to the global optimum

for when minimizing a convex function.

w

f(w)

w*

…

Convex

Any local minimum is also a global

minimum.

w

g(w) Non-convex

…

…

w*w!

Multiple local minima may exist.

Linear regression, ridge regression, and logistic regression are all convex!
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Why do we move in the direction opposite the gradient?
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We have seen this before!

(Batch) gradient descent for linear regression

RSS(w) =
∑
n

[yn −w>xn]2 =
{

w>X>Xw − 2
(
X>y

)>
w
}

+ const

• Initialize w to w (0) (e.g., randomly);

set t = 0; choose η > 0

• Loop until convergence

1. Compute the gradient

∇RSS(w) = X>(Xw (t) − y)
2. Update the parameters

w (t+1) = w (t) − η∇RSS(w)

3. t ← t + 1
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Impact of step size

Choosing the right η is important

small η is too slow?

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

large η is too unstable?

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3
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How to choose η in practice?

• Try 0.0001, 0.001, 0.01, 0.1 etc. on a validation dataset and choose

the one that gives fastest, stable convergence

• Reduce η by a constant factor (eg. 10) when learning saturates so

that we can reach closer to the true minimum.

• More advanced learning rate schedules such as AdaGrad, Adam,

AdaDelta are used in practice.
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Gradient descent for a general function

General form for minimizing f (θ)

θt+1 ← θt − η ∂f
∂θ

∣∣∣
θ=θt

• η is step size, also called the learning rate – how far we go in the

direction of the negative gradient

• Step size needs to be chosen carefully to ensure convergence.

• Step size can be adaptive, e.g., we can use line search

• We are minimizing a function, hence the subtraction (−η)

• With a suitable choice of η, we converge to a stationary point

∂f

∂θ
= 0

• Stationary point not always global minimum (but happy when

convex)

• Popular variant called stochastic gradient descent
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Gradient descent update for Logistic Regression

Finding the gradient of E(w) looks very hard, but it turns out to be

simple and intuitive.

Let’s start with the derivative of the sigmoid function σ(a):

d

d a
σ(a) =

d

d a

(
1 + e−a

)−1
=

−1

(1 + e−a)2
d

d a
(1 + e−a)

=
e−a

(1 + e−a)2

=
1

1 + e−a
e−a

1 + e−a

=
1

1 + e−a
1 + e−a − 1

1 + e−a

= σ(a)[1− σ(a)]
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Gradients of the cross-entropy error function

Cross-entropy Error Function

E(w) = −
∑
n

{yn log σ(w>xn) + (1− yn) log[1− σ(w>xn)]}

d

d a
σ(a) = σ(a)[1− σ(a)]

Computing the gradient

∂E(w)

∂w
= −

∑
n

{
yn
σ(w>xn)[1− σ(w>xn)]

σ(w>xn)
xn

− (1− yn)
σ(w>xn)[1− σ(w>xn)]

1− σ(w>xn)
xn

}
= −

∑
n

{
yn[1− σ(w>xn)]xn − (1− yn)σ(w>xn)xn

}
=
∑
n

{
σ(w>xn)− yn

}︸ ︷︷ ︸
Error of the nth training sample.

xn
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Numerical optimization

Gradient descent for logistic regression

• Choose a proper step size η > 0

• Iteratively update the parameters following the negative gradient to

minimize the error function

w (t+1) ← w (t) − η
∑
n

{
σ(w (t)>xn)− yn

}
xn

Stochastic gradient descent for logistic regression

• Choose a proper step size η > 0

• Draw a sample n uniformly at random

• Iteratively update the parameters following the negative gradient to

minimize the error function

w (t+1) ← w (t) − η
{
σ(w (t)>xn)− yn

}
xn
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SGD versus Batch GD

• SGD reduces per-iteration complexity since it considers fewer

samples.

• But it is noisier and can take longer to converge.
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Example: Spam Classification

free bank meet time y

Email 1 5 3 1 1 Spam

Email 2 4 2 1 1 Spam

Email 3 2 1 2 3 Ham

Email 4 1 2 3 2 Ham

Perform gradient descent to learn weights w

• Feature vector for email 1: x1 = [1, 5, 3, 1, 1]>

• Let X = [x1, x2, x3, x4], the matrix of all feature vectors.

• Initial weights w = [0.5, 0.5, 0.5, 0.5, 0.5]>

• Prediction

[σ(w>x1), σ(w>x2), σ(w>x3), σ(w>x4)]> = [0.996, 0.989, 0.989, 0.989]>

which can be obtained by computing w>X and then apply σ(·)
entrywise, which we abuse the notation and write σ(X>w).
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Example: Spam Classification, Batch Gradient Descent

free bank meet time y

Email 1 5 3 1 1 Spam

Email 2 4 2 1 1 Spam

Email 3 2 1 2 3 Ham

Email 4 1 2 3 2 Ham

Perform gradient descent to learn weights w

• Prediction σ(X>w) = [0.996, 0.989, 0.989, 0.989]>

• Difference from labels y = [1, 1, 0, 0]> is

σ(X>w)− y = [−0.004,−0.011, 0.989, 0.989]>

• Gradient of the first email,

g 1 = (σ(w>x1)− y1)x1 = −0.004[1, 5, 3, 1, 1]>

• w← w − 0.01︸︷︷︸
learning rate

∑
n gn = w − ηX (σ(X>w)− y)

notice the similarity with linear regression 44



Example: Spam Classification, Batch Gradient Descent

free bank meet time y

Email 1 5 3 1 1 Spam

Email 2 4 2 1 1 Spam

Email 3 2 1 2 3 Ham

Email 4 1 2 3 2 Ham

0 20 40
Number of Iterations

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

ili
ty

of
b

ei
n

g
S

p
am

Learning Rate = η = 0.01
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Predictions for Emails 3 and 4 are initially close to 1 (spam), but they converge

towards the correct value 0 (ham)
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Example: Spam Classification, Stochastic Gradient Descent

free bank meet time y

Email 1 5 3 1 1 Spam

Email 2 4 2 1 1 Spam

Email 3 2 1 2 3 Ham

Email 4 1 2 3 2 Ham

• Prediction σ(w>xr ) = 0.996 for a randomly chosen email r

• Difference from label y = 1 is −0.004

• Gradient is g r = (σ(w>xn)− y)xr = −0.004xr

• w← w − 0.01g r
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Example: Spam Classification, Stochastic Gradient Descent

free bank meet time y

Email 1 5 3 1 1 Spam

Email 2 4 2 1 1 Spam

Email 3 2 1 2 3 Ham

Email 4 1 2 3 2 Ham
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Predictions for Emails 3 and 4 are initially close to 1 (spam), but they converge

towards the correct value 0 (ham)
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Example: Spam Classification, Test Phase

free bank meet time y

Email 1 5 3 1 1 Spam

Email 2 4 2 1 1 Spam

Email 3 2 1 2 3 Ham

Email 4 1 2 3 2 Ham

• Final w = [0.187, 0.482, 0.179,−0.512,−0.524]> after 50 batch

gradient descent iterations.

• Given a new email with feature vector x = [1, 1, 3, 4, 2], the

probability of the email being spam is estimated as

σ(w>x) = σ(−1.889) = 0.13.

• Since this is less than 0.5 we predict ham.
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Contrast Naive Bayes and Logistic Regression

Both classification models are linear functions of features

Joint vs. conditional distribution

Naive Bayes models the joint distribution: P(X ,Y ) = P(Y )P(X |Y )

Logistic regression models the conditional distribution: P(Y |X )

Correlated vs. independent features

Naive Bayes assumes independence of features and multiple occurences

Logistic Regression implicitly captures correlations when training weights

Generative vs. Discriminative

NB is a generative model, LR is a discriminative model
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Generative Model v.s. Discriminative Model

{x : P(Y = 1|X = x) = P(Y = 0|X = x)} is called the decision

boundary of our data.

Generative classifiers

Model the class-conditional densities P(Y |X = x) explicitly:

P(Y = 1|X = x) =
P(X = x |Y = 1)P(Y = 1)

P(X = x |Y = 1)P(Y = 1) + P(X = x |Y = 0)P(Y = 0)

This means we need to separately estimate both P(X |Y ) and P(Y ).

Discriminative classifier

Directly model the decision boundary and avoid estimating the

conditional probabilities.
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Summary

Setup for binary classification

• Logistic Regression models conditional distribution as:

p(y = 1|x ; w) = σ[g(x)] where g(x) = w>x

• Linear decision boundary: g(x) = w>x = 0

Minimizing cross-entropy error (negative log-likelihood)

• E(b,w) = −
∑

n{yn log σ(b+w>xn)+(1−yn) log[1−σ(b+w>xn)]}
• No closed form solution; must rely on iterative solvers

Numerical optimization

• Gradient descent: simple, scalable to large-scale problems

• Move in direction opposite of gradient!

• Gradient of the cross-entropy error takes nice form
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What’s next?

What about when we want to predict multiple classes?

• Dog vs. cat. vs crocodile

• Movie genres (action, horror, comedy, . . . )

• Yelp ratings (1, 2, 3, 4, 5)

• Part of speech tagging (verb, noun, adjective, . . . )

• . . .
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