
18-661 Introduction to Machine Learning

Decision Trees

Spring 2020

ECE – Carnegie Mellon University



Course logistics

• HW 4 will be released on Friday, due March 18.

• Midterm exam will be graded by next week.

• Mid-semester grades (including HWs 1 to 3 and the midterm exam)

are due to the registrar by March 9. These do not go on your

transcript and are only meant as an indicator of how you are doing

so far. There is plenty of time to make up for low grades!
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What’s next

• Decision trees, boosting

• Spring break!

• Neural networks

• Unsupervised learning (clustering, PCA)

• Reinforcement learning
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Outline

1. Recap: Nearest Neighbors

2. Decision Trees: Motivation

3. Learning A Decision Tree
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Recap: Nearest Neighbors



Parametric vs. nonparametric models

Key difference:

• Parametric models assume that the data can be characterized via

some fixed set of parameters θ corresponding to a fixed set of

features. Given these parameters, our future predictions are

independent of the data D, i.e., P(x |θ,D) = P(x |θ).

• Often simpler and faster to learn, but can sometimes be a poor fit

• Nonparametric models instead assume that the model features

depend on the data D. The number of parameters tends to grow

with the size of the dataset.

• More complex and expensive, but can learn more flexible patterns
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Recognizing flowers

Types of Iris: setosa, versicolor, and virginica
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Labeling an unknown flower type
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Closer to red cluster: so labeling it as setosa
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Nearest neighbor classification (NNC)

The nearest neighbor of a point x is

x(1) = xnn(x)

nn(x) ∈ [N] = {1, 2, · · · ,N}, i.e., it is the index of a training instance.

nn(x) = argminn∈[N] ‖x − xn‖22 = argminn∈[N]

D∑
d=1

(xd − xnd)2

Classification rule

y = f (x) = ynn(x)

Example: if nn(x) = 2, then ynn(x) = y2, which is the label of the 2nd

data point.

Intuitively, we find the training instance that most resembles x (is its

nearest neighbor) and apply its label.

7



Visual example

In this 2-dimensional example, the nearest point to x is a red training

instance, thus, x will be labeled as red.

x1

x2

(a)
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Decision boundary

For every point in the space, we can determine its label using the NNC

rule. This gives rise to a decision boundary that partitions the space into

different regions.

x1

x2

(b)
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K-nearest neighbor (KNN) classification

Increase the number of nearest neighbors to use?

• 1-nearest neighbor: nn1(x) = argminn∈[N] ‖x − xn‖22
• 2nd-nearest neighbor: nn2(x) = argminn∈[N]−nn1(x) ‖x − xn‖22
• 3rd-nearest neighbor: nn2(x) = argminn∈[N]−nn1(x)−nn2(x) ‖x − xn‖22

The set of K-nearest neighbors

knn(x) = {nn1(x), nn2(x), · · · , nnK (x)}

Let x(k) = xnnk (x), then

‖x − x(1)‖22 ≤ ‖x − x(2)‖22 · · · ≤ ‖x − x(K )‖22
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How to classify with K neighbors?

Classification rule

• Every neighbor votes: suppose yn (the true label) for xn is c , then

• vote for c is 1

• vote for c ′ 6= c is 0

We use the indicator function I(yn == c) to represent the votes.

• Aggregate everyone’s vote

vc =
∑

n∈knn(x)

I(yn == c), ∀ c ∈ [C]

• Choose the label with the most votes

y = f (x) = arg maxc∈[C] vc
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Example

K=1, Label: red

x1

x2

(a)

K=3, Label: red

x1

x2

(a)

K=5, Label: blue

x1

x2

(a)
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How to choose an optimal K?
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When K increases, the decision boundary becomes smooth.
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Hyperparameters in NN

Two crucial choices for NN

• Choosing K , i.e., the number of nearest neighbors (default is 1)

• Choosing the right distance measure (default is Euclidean distance),

for example, from the following generalized distance measure

‖x − xn‖p =

(∑
d

|xd − xnd |p
)1/p

for p ≥ 1.

These are not specified by the algorithm itself — resolving them requires

empirical studies and are task/dataset-specific.
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Tuning by using a validation dataset

Training data

• N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
• They are used for learning f (·)

Test data

• M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
• They are used for assessing how well f (·) will do in predicting an

unseen x /∈ Dtrain

Validation data

• L samples/instances: Dval = {(x1, y1), (x2, y2), · · · , (xL, yL)}
• They are used to optimize hyperparameter(s).

Training data, validation and test data should not overlap!
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Preprocess data

Normalize data to have zero mean and unit standard deviation in

each dimension

• Compute the means and standard deviations in each feature

x̄d =
1

N

∑
n

xnd , s2d =
1

N − 1

∑
n

(xnd − x̄d)2

• Scale the feature accordingly

xnd ←
xnd − x̄d

sd

Many other ways of normalizing data — you would need/want to try

different ones and pick among them using (cross) validation.
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Mini-summary

Advantages of NNC

• Computationally, simple and easy to implement – just compute

distances

• Can learn complex decision boundaries

Disadvantages of NNC

• Computationally intensive for large-scale problems: O(ND) for

labeling a data point

• We need to “carry” the training data around. Without it, we cannot

do classification. This type of method is called nonparametric.

• Choosing the right distance measure and K can be difficult.
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Decision Trees: Motivation



Recall: Multi-class classification

x1 

x 2
 

+ Pr(Square) = 0.6 

+ 

Pr(Circle) = 0.75 

Pr(Triangle) = 0.2 

We combined binary decision boundaries to partition the feature space

• One-versus-all approach
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Recall: Multi-class classification

x1 

x 2
 

We combined binary decision boundaries to partition the feature space

• One-versus-one approach
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Recall: Multi-class classification

x1 
x 2

 

• Suppose the 3 classes are 3 possible treatments for an illness and

you recommend treatment 1.

• The patient sues you and your lawyer needs to explain the reasoning

behind the decision in court. What would she say?

• “w>
(1)x > 0 and w>

(2)x < 0”? This might not convince the judge.

• “Treatment 1 worked for similar patients”? This ignores the

structure of your data.
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Need interpretable decision boundaries

x1 
x 2

 

• Should be able to explain the reasoning in clear terms, e.g.,“I always

recommend treatment 1 when a patient has fever ≥ 100F”

• The rules that you use to make decisions can be easily used by a

lay-person without performing complex computations

• Decision trees can provide such simple decision rules
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Many decisions are tree structured

Medical treatment

Fever 

𝑇 > 100 𝑇 < 100 

Treatment #1 Muscle Pain 

Treatment #2 

High 

Treatment #3 

Low 

Salary in a company

Degree 

High School College Graduate 

Work Experience Work Experience Work Experience 

< 5yr > 5yr 

$𝑿𝟏 $𝑿𝟐 

< 5yr > 5yr 

$𝑿𝟑 $𝑿𝟒 

< 5yr > 5yr 

$𝑿𝟓 $𝑿𝟔 

Other examples: fault detection in manufacturing systems, student

admissions decisions, jail/parole decisions
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What is a tree?

Node 

Edge 
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Special names for nodes in a tree

Node 

Root 

Edge 

Leaf 
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A tree partitions the feature space

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E
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Learning A Decision Tree



Learning a tree model

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

Three things to learn:

1. The structure of the tree.

2. The threshold values (θi ).

3. The values for the leaves

(A,B, . . .).

26



Example: Choosing whether you want to wait at a restaurant

Use the attributes to decide whether to wait (T) or not wait (F)
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Which attribute to split first?

• Patron is a better choice – gives more information to help

distinguish between the labels

• Intuition: Like playing 20 questions and choosing carefully which

question to ask first

• More formally: use information gain to choose which attribute to

split
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How to measure information gain I (X ;Y )?

Idea: Gaining information is equivalent to reducing our uncertainty.

• Use entropy H(Y ) to measure uncertainty in Y .

• We define H(Y ) and H(Y |X ) next

Definition (Entropy)

If a random variable Y takes K different values, a1, a2...aK , then its

entropy is

H[Y ] = −
K∑
i=1

Pr(Y = ai ) log Pr(Y = ai )

Convention: 0 log 0 is considered as 0
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Example: Entropy of a Bernoulli random variable

What is the entropy H(Y ) of Y , which is 1 with probability p and 0

otherwise?

Find the entropy H(Y ) for p = 0.5, p = 0.25, p = 0.

• For p = 0.5

H(Y ) = −(0.5 log 0.5 + 0.5 log 0.5) = log 2 = 1 bit (log is base 2)

• For p = 0.25

H(Y ) = −(0.25 log 0.25 + 0.75 log 0.75) = 2 log 2− 0.75 log 3 = 0.81 bits

• For p = 0, H(Y ) = 0

With more uncertainty (p = 0.5), we have a larger entropy.
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Illustrating Entropy

Given a range of possible values,

entropy is maximized with a uniform

distribution.
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Conditional entropy

Definition (Conditional Entropy)

Given two random variables X and Y

H[Y |X ] =
∑
k

P(X = ak)H[Y |X = ak ] (1)

In our restaurant example:

• X : the attribute to be split

• Y : wait or not (the labels)

Definition (Information Gain)

I (X ;Y ) = H[Y ]− H[Y |X ] (2)

Measures the reduction in entropy (i.e., the reduction of uncertainty in

Y ) when we also consider X .
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Which attribute to split?

Patron vs. Type?

• Let us compute the information gain I (X ;Y ) = H[Y ]− H[Y |X ] for

Patron and Type

• When H[Y ] is fixed, we need only to compare conditional entropies
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Information Gain if we split ”Patron”

• H(Y ) = − 6
12 log 6

12 −
6
12 log 6

12 = 1 bit

• H(Y |X = none) = 0

• H(Y |X = some) = 0

• H(Y |X = full) = −
(

2
2+4 log 2

2+4 + 4
2+4 log 4

2+4

)
≈ 0.9 bits

• Thus the conditional entropy is

H(Y |X ) = (
2

12
× 0 +

4

12
× 0 +

6

12
× 0.9) = 0.45 bits

• Information Gain I (X ;Y ) = 1− 0.45 = 0.55 bits
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Information Gain if we split ”Type”

• H(Y ) = − 6
12 log 6

12 −
6
12 log 6

12 = 1 bit

• H(Y |X = french) = log 2 = 1 bit

• H(Y |X = italian) = log 2 = 1 bit

• H(Y |X = thai) = log 2 = 1 bit

• H(Y |X = burger) = log 2 = 1 bit

• Thus the conditional entropy is

H(Y |X ) = 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1 bit

• Information Gain I (X ;Y ) = 1− 1 = 0 bits
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Splitting on “Patron” or “Type”?

• Information gain from “Patron” is 0.55 bits.

• Information gain from “Type” is 0 bits.

Thus, we should split on “Patron” and not “Type” (higher information

gain). This is consistent with our intuition.
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Next split?
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Do we split on ”None” or ”Some”?

• No, we do not

• The decision is deterministic, as seen from the training data.
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Next split

Next split?

We will look only at the 6 instances with Patrons == Full
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Greedily we build the tree and get this
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What is the optimal Tree Depth?

• What happens if we pick the wrong depth?

• If the tree is too deep, we can overfit

• If the tree is too shallow, we underfit

• Max depth is a hyperparameter that should be tuned by the data

• Alternative strategy is to create a very deep tree, and then to prune

it (see Section 9.2.2 in ESL for details)
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Cost Complexity Pruning

Pruning means collapsing non-terminal nodes to eliminate a split.

Cost complexity criterion

Cα(T ) =

|T |∑
m=1

errorm(T ) + α|T |

• Find the tree T that minimizes the cost Cα(T ), where

m = 1, 2, . . . , |T | indexes the leaf nodes.

• Measure error of the training data at each leaf node as before

(misclassification rate, squared error for linear regression).

• Choose α as a hyperparameter (similar to regularization).

To find the tree that minimizes Cα, greedily collapse the node in the full

tree that increases the error rate the least.
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Overfitting in Decision Trees

• Including irrelevant attributes can result in overfitting the training

example data.

• If we have too little training data, even a reasonable hypothesis

space will overfit.

Strategies to avoid overfitting

• Stop growing when data split is not statistically significant.

• Acquire more training data.

• Remove irrelevant attributes (manual process — not always

possible).

• Grow full tree, then post-prune (e.g., cost complexity)
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How to classify with a pruned decision tree?

• If we stop here, not all training samples would be classified correctly

• More importantly, how do we classify a new instance?

• We label the leaves of this smaller tree with the majority of training

sample’s labels.
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Example
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Computational Considerations: Numerical Features

• How should we decide the threshold to use in splitting the feature?

• Can we do this efficiently?

• Yes – for a given feature we only need to consider the n values in the

training data!

• If we sort each feature by these n values, we can quickly compute

and maximize the information gain along each possible threshold.

• This takes O(dn log n) time, where d is the number of features

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

x
(1)
1 x

(2)
1 x

(3)
1

∣∣∣∣θ5 x (4)1 . . . x
(n)
1

46



Computational Considerations: Categorical Features

• Assuming q distinct categories, there are 1
2 (2q − 2) = 2q−1 − 1

possible partitions

• Things simplify in the case of binary classification or regression

• Can sort the features by the fraction of labels falling in class 1

• Suffices to consider only q − 1 possible splits (see Section 9.2.4 in

ESL)

• Example: suppose we have two labels (0 or 1) and the feature is

“shape,” which has three categories (circle, square, or triangle).
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1

1

1

1

1

1

1
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00
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0 0

00

0
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Disadvantages of Decision Trees

• Binary decision trees find it hard to learn linear boundaries.

• Decision trees can have high variance due to dependence on the

training data.

• We use heuristic training techniques: finding the optimal partition is

NP-hard.

A

B

C D

E

✓1 ✓4

✓2

✓3

x1

x2

A

B

C D

E

✓1 ✓4

✓2

✓3

x1

x2

48



Advantages of Decision Trees

• Can be interpreted by humans (as long as the tree is not too big)

• Computationally efficient (for shallow trees)

• Handles both numerical and categorical data

• Can be used for both classification and regression

• Compact representation: unlike Nearest Neighbors we don’t need

training data at test time

• But, like NN, decision trees are nonparametric because the number

of parameters depends on the data
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Summary of Decision Trees

You should know:

• Motivation for considering decision trees

• How to construct a decision tree

• Techniques for ensuring the tree does not overfit

• Disadvantages of decision tree methods

Decision trees are a common building block for various ensemble methods

(more on this next lecture).
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