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Announcements

• Homework 5: due on April 1st
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Outline

1. Review of Neural Networks

2. Clustering

3. k-means

4. k-means++

2



Review of Neural Networks



Neural Network Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

3



Neural Network Compress the Set of Features

classificationdata intelligence

= ??

• Start with feature vector x containing all pixels in the image

• Layer 1: distill the edges of the image

• Layer 2: distill triangles, circles, etc.

• Layer 3: recognize pointy ears, fur style etc.

• Layer 4: performs logistic regression on the features in layer 3

We cannot directly control what each layer learns; this depends on the

training data

3



Perceptron: Rosenblatt (1957)

• The perception is a single-unit neural network with the heavyside

activation function or sign(x)

• It considers a linear binary classification problem to distinguish

between two classes {−1,+1}.

x1

gx2

x3

+1

b

w1

w2

w3

g(wT x + b)
1

0 wTx+b, Linear comb. 
of features

g(wTx+b)

Perceptron

• Assign label sign(w>x + b) to a new sample

• Notation change: Merge b into the vector w and append 1 to the

vector x
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How to learn the weights w?

The objective is to learn w that minimizes the number of errors on the

training dataset. That is, minimize

ε =
∑
n

I[yn 6= sign(w>xn)]

Algorithm: For a randomly chosen data point (xn, yn) make small

changes to w so that

yn = sign(w>xn)

Two cases

• If yn = sign(w>xn), do nothing.

• If yn 6= sign(w>xn),

wnew ← wold + ynxn
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Binary Logistic Regression

• Suppose g is the sigmoid function σ(wTx + b) = 1

1+e−(wT x+b)

• We can find a linear decision boundary separating two classes. The

output is the probability of x belonging to class 1.

x1

gx2

x3

+1

b

w1

w2

w3

g(wT x + b)
1

0 wTx+b, Linear comb. 
of features

g(wTx+b)

Neuron with Sigmoid activation
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Choice of Activation Function

• Sigmoid unit σ(z) = 1
1+e−z

• Tanh Unit tanh(z) = 2σ(2z)− 1

• Both are squashing type non-linearity

• Problem: Saturate across most of their domain, strongly sensitive

only when z is closer to zero

• To avoid the problem of vanishing gradients we can use piece-wise

linear approximations to these functions

• This significantly reduces the computation complexity because

gradients can take only one a few values
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Rectified Linear Units

• Approximates the softplus function which is log(1 + ez)

• ReLu Activation function is g(z) = max(0, z) with z ∈ R

• Similar to linear units. Easy to optimize!

• Give large and consistent gradients when active

• Modifications: Leaky ReLUs
8



The Back-propagation Algorithm

zk

yj
xi

wij wjk

uj yj

Nodes in the hidden layer

Apply gj to uj

• wij : weights connecting node i in layer (`− 1) to node j in layer `.

• bj , bk : bias for nodes j and k .

• uj , uk : inputs to nodes j and k (where uj = bj +
∑

i xiwij).

• gj , gk : activation function for node j (applied to uj) and node k.

• yj = gj(uj), zk = gk(uk): output/activation of nodes j and k.

• tk : target value for node k in the output layer.
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The Back-propagation Algorithm

Back-propagate the error. Given parameters w , b:

• Step 1: Forward-propagate to find zk in terms of the input (the

“feed-forward signals”).

• Step 2: Calculate output error E by comparing the predicted output

zk to its true value tk .

• Step 3: Back-propagate E by weighting it by the gradients of the

associated activation functions and the weights in previous layers.

• Step 4: Calculate the gradients ∂E
∂w and ∂E

∂b for the parameters w , b

at each layer based on the backpropagated error signal and the

feedforward signals from the inputs.

• Step 5: Update the parameters using the calculated gradients

w ← w − η ∂E
∂w , b ← b − η ∂E

∂b where η is the step size.
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Optimizing SGD For Faster Convergence

Speed of convergence depends on parameters such as

• Mini-batch size

• Learning Rate

• Momentum

• Width of each layer

Avoiding Overfitting

• Regularizing the loss function

• Choosing the right network depth

• Dropout– Ensemble of several models
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Deep Convolutional Networks

• Deep supervised neural networks are generally too difficult to train

• One notable exception: Convolutional neural networks (CNN)

• Convolutional nets were inspired by the visual system’s structure

• Have much fewer connections and parameters and so they are easier

to train
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2-Dimensional Convolution

f [x .y ] ∗ g [x , y ] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2] · [x − n1, y − n2]
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Convolutional Network Layers

Convolve subsets of an image with a small filter. Each pixel in the output

image is a weighted sum of the filter and a subset of the input.
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LeNet 5, LeCun 1998

• Input: 32× 32 pixel image. Largest character is 20× 20 (All

important info should be in the center of the receptive field of the

highest level feature detectors)

• Cx: Convolutional layer (C1,C3,C5)

• Sx: Sub-sample layer (S2,S4)

• Fx: Fully connected layer (F6)
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LeNet 5, Layer C1

C1: Convolutional layer with 6 feature maps of size 28X28 C1k(k = 1..6)

Each unit of C1 has 5x5 receptive field in the input layer.

• Topological structure

• Sparse connections

• Shared weights

(5 ∗ 5 + 1) ∗ 6 = 156 parameters to learn

Connections: 28 ∗ 28 ∗ (5 ∗ 5 + 1) ∗ 6 = 122304

If it was fully connected, we had (32*32+1)*(28*28)*6 parameters
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LeNet 5, Layer S2

S2: Sub-sampling layer with 6 feature maps of size 14× 14

2× 2 non-overlapping receptive fields in C1

These days, we typically use
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1. Review of Neural Networks

2. Clustering

3. k-means

4. k-means++
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Clustering



Supervised Learning: Regression

How much should you sell your house for?

regressiondata intelligence

= ??

house size

pi
rc

e 
($

)

regressiondata intelligence

= ??

house size

pi
rc

e 
($

)

input: houses & features

regressiondata intelligence

= ??

house size

pi
rc

e 
($

)

learn: x → y relationship

regressiondata intelligence

= ??

house size

pi
rc

e 
($

)

predict: y (continuous)
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Supervised Learning: Classification

Cat or dog?

classificationdata intelligence

= ??

classificationdata intelligence

= ??

input: cats and dogs

classificationdata intelligence

= ??

learn: x → y relationship

classificationdata intelligence

= ??

predict: y (categorical)
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Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Supervised versus Unsupervised Learning

Supervised Learning: labeled observations {(x1, y1), . . . (xn, yn)}

• Labels ‘teach’ algorithm to learn mapping from observations to labels

• Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest

Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations {x1, . . . , xn}

• Learning algorithm must find patterns from features alone

• Can be goal in itself (discover hidden patterns, exploratory analysis)

• Can be means to an end (pre-processing for supervised task)

• Examples:

• Clustering (today)

• Dimensionality Reduction: Transform an initial feature representation

into a more concise representation

21



Clustering

How to segment an image?

clusteringdata intelligence

input: raw pixels {x}

clusteringdata intelligence

separate: {x} into sets output: cluster labels {z}

22



Clustering

Setup Given D = {xn}Nn=1 and K , we want to output:

• {µk}Kk=1: prototypes of clusters

• A(xn) ∈ {1, 2, . . . ,K}: the cluster membership

Toy Example Cluster data into two clusters.

(a)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Example Applications

• Identify communities within social networks

• Find topic groups in news stories

• Group similar sequences into gene families
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First? Example of Clustering

• John Snow, a London physician plotted the location of cholera

deaths on a map during an outbreak in the 1850s.

• The locations indicated that cases were clustered around certain

intersections where there were polluted wells – thus exposing both

the problem and the solution.

• This story is all the more relevant today as we are trying to

overcome the COVID-19 outbreak

24



First? Example of Clustering

• John Snow, a London physician plotted the location of cholera

deaths on a map during an outbreak in the 1850s.

• The locations indicated that cases were clustered around certain

intersections where there were polluted wells – thus exposing both

the problem and the solution.

• This story is all the more relevant today as we are trying to

overcome the COVID-19 outbreak

24



First? Example of Clustering

• John Snow, a London physician plotted the location of cholera

deaths on a map during an outbreak in the 1850s.

• The locations indicated that cases were clustered around certain

intersections where there were polluted wells – thus exposing both

the problem and the solution.

• This story is all the more relevant today as we are trying to

overcome the COVID-19 outbreak

24



First? Example of Clustering

• John Snow, a London physician plotted the location of cholera

deaths on a map during an outbreak in the 1850s.

• The locations indicated that cases were clustered around certain

intersections where there were polluted wells – thus exposing both

the problem and the solution.

• This story is all the more relevant today as we are trying to

overcome the COVID-19 outbreak

24



More examples

Image segmentation into foreground and background

25



More examples

Detecting brain lesions from MRI Scans
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More examples

Social network analysis

27



More examples

Clustering gene expression data
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Clustering

Today we will cover two methods for clustering

• k-means

• k-means++

29
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k-means

k-means: an iterative clustering method

High-level idea:

• Initialize: Pick k random points as cluster centers, {µ1, . . . , µk}
• Alternate:

1. Assign data points to closest cluster center in {µ1, . . . , µk}
2. Change each cluster center to the average of its assigned points

• Stop: When the clusters are stable

30



k-means example

• Initialize: Pick k random points as cluster centers

• (Shown here for k=2)

(a)

−2 0 2

−2

0

2
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k-means example

• Alternating Step 1: Assign data points to closest cluster center

(b)

−2 0 2

−2

0

2
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k-means example

• Alternating Step 2: Change the cluster center to the average of the

assigned points

(c)

−2 0 2

−2

0

2

Then: Repeat . . .
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k-means example (several iterations)

(a)

−2 0 2

−2

0

2

(b)
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0

2 (c)

−2 0 2

−2

0

2

(d)

−2 0 2
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0

2 (e)

−2 0 2

−2

0

2 (f)

−2 0 2

−2
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2

(g)

−2 0 2

−2

0

2 (h)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2
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k-means clustering: details

Intuition: Data points assigned to cluster k should be near prototype µk

Distortion measure: (clustering objective function, cost function)

J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖2 =
K∑

k=1

∑
n:A(xn)=k

‖xn − µk‖2︸ ︷︷ ︸
spread within the kth cluster

where rnk ∈ {0, 1} is an indicator variable

rnk = 1 if and only if A(xn) = k

Notes:

• Distance measure: ‖xn − µk‖2 calculates how far xn is from the

cluster center µk

• Canonical example is the 2-norm, i.e., ‖ · ‖22, but could be some

other distance measure!
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Algorithm

J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖2

Minimize distortion Alternative optimization between {rnk} and {µk}

• Step 0 Initialize {µk} to some values

• Step 1 Fix {µk} and minimize over {rnk}, to get this assignment:

rnk =

{
1 if k = argminj ‖xn − µj‖2

0 otherwise

• Step 2 Fix {rnk} and minimize over {µk} to get this update:

µk =

∑
n rnkxn∑
n rnk

• Step 3 Return to Step 1 unless stopping criterion is met
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Properties of k-means algorithm

Does it converge?

• Guaranteed to converge in a finite number of iterations

• Key idea: k-means is an alternating optimization approach

• Each step is guaranteed to decrease the objective/cost

function—thus guaranteed to converge

• *However*, may converge to a local minimum (objective is

non-convex)

What’s the runtime?

• Running time per iteration:

• Assume: n data points, each with d features, and k clusters

• Assign data points to closest cluster: O(ndk)

• Re-compute cluster centers: O(ndk)

• Thus, total runtime is: O(ndki), where i is the number of

iterations
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Practical Issues with k-means

• How to select k?

• Prior knowledge

• Heuristics (e.g., elbow method)
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Elbow method

Key idea: select a small value of k that adding a new cluster doesn’t

reduce the within-cluster distances much
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Elbow Method
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How can we tell the right number of clusters? 

 
In general, this is a unsolved problem. However there are many 

approximate methods. In the next few slides we will see an example. 
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1 2 3 4 5 6 7 8 9 10 

 When k = 1, the objective function is 873.0 
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1 2 3 4 5 6 7 8 9 10 

 When k = 2, the objective function is 173.1 
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1 2 3 4 5 6 7 8 9 10 

 When k = 3, the objective function is 133.6 
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Elbow Method
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We can plot the objective function values for k equals 1 to 6… 

 

The abrupt change at k = 2, is highly suggestive of two clusters 

in the data. This technique for determining the number of 

clusters is known as “knee finding” or “elbow finding”. 

Note that the results are not always as clear cut as in this toy example 
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Practical Issues with k-means

• How to select k?

• Prior knowledge

• Heuristics (e.g., elbow method)

• How to select distance measure?

• Often requires some knowledge of problem

• Some examples: Euclidean distance (for images), Hamming distance

(distance between two strings), shared key words (for websites)
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How to get k-means to work on this data?

Should look at the distance of the data points from the origin
√
x2n + y2

n
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Distance measure

Changing features (distance measure) can help
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Practical Issues with k-means

• How to select k?

• Prior knowledge

• Heuristics (e.g., elbow method)

• How to select distance measure?

• Often requires some knowledge of problem

• Some examples: Euclidean distance (for images), Hamming distance

(distance between two strings), shared key words (for websites)

• How to initialize cluster centers?

• The final clustering can depend significantly on the initial points you

pick!
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How to initialize cluster centers?

Random initialization can lead to different results

Choosing k is also non-trivial
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k-means++



k-means++

Key idea: Run k-means, but with a better initialization

• Choose center µ1 at random

• For j = 2, . . . , k

• Choose µj among x1, . . . , xn with probability:

P(µj = xi ) ∝ minj′<j‖xi − µj′‖2

This means that if xi is close to one of the already chosen cluster

means µ1, . . .µj−1, then we assign a lower probability of selecting it

as the next cluster mean.

Initialization helps to get good coverage of the space

Theorem: k-means++ always obtains a O(logk) approximation to the

optimal solution in expectation.

Running k-means after this initialization can only improve on the result
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k-means++
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You should know . . .

• What unsupervised learning is

• What clustering is

• How to cluster using k-means

• Practical issues with k-means

• How k-means++ improves on k-means
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