
18-661 Introduction to Machine Learning

Overfitting and the Bias-Variance Trade-off

Spring 2020

ECE – Carnegie Mellon University

Announcements

• HW 2 will be released today, due February 10.

• Recitation on Friday will cover linear regression, gradient descent,

and the bias-variance tradeoff (today’s lecture). These problems will

be helpful for HW 2.

• There has been some student demand for a Python and Jupyter

tutorial.

• SV will include this material at the end of Friday’s recitation.

• Pittsburgh will hold the tutorial tomorrow and broadcast to Rwanda

around 1pm ET (rooms TBD).

• HW 1 solutions will be posted on Canvas later this week.

1

Outline

1. Review of Ridge Regression

2. Review of Non-linear Basis Functions

3. Overfitting and Regularization

4. Hyperparameter Tuning and Cross-Validation

5. Bias-Variance Trade-off

2

Review of Ridge Regression

What can go wrong with the LMS solution?

wLMS =
(
X>X

)−1
X>y

Why might X>X be non-invertible?

• Answer 1: N < D. Not enough data to estimate all parameters.

• Answer 2: Columns of X are not linearly independent, e.g., some

features are linear functions of other features. In this case, solution

is not unique. Examples:

• A feature is a re-scaled version of another, for example, having two

features correspond to length in meters and feet respectively

• Same feature is repeated twice – could happen when there are many

features

• A feature has the same value for all data points

• Sum of two features is equal to a third feature

3

Example: Matrix X>X is not invertible

sqft (1000’s) bathrooms sale price (100k)

1 2 2

2 2 3.5

1.5 2 3

2.5 2 4.5

Design matrix and target vector:

X =


1 1 2

1 2 2

1 1.5 2

1 2.5 2

 , w =

w0

w1

w2

 , y =


2

3.5

3

4.5


The ’bathrooms’ feature is redundant, so we don’t need w2

y = w0 + w1x1 + w2x2

= w0 + w1x1 + w2 × 2, since x2 is always 2!

= w0,eff + w1x1, where w0,eff = (w0 + 2w2)
4

Ridge regression

Intuition: what does a non-invertible X>X mean?

Consider the SVD of this matrix:

X>X = V


λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 · · · · · · · · · 0

0 · · · · · · λr 0

0 · · · · · · 0 0

V>

where λ1 ≥ λ2 ≥ · · ·λr > 0, r < D, and V is a unitary matrix (its

transpose is its inverse). We will need to divide by zero to compute

(X>X)−1...

Fix the problem: ensure all singular values are non-zero:

X>X + λI = V diag(λ1 + λ, λ2 + λ, · · · , λ)V>

where λ > 0 and I is the identity matrix.

5

Regularized least squares (ridge regression)

Solution

w =
(
X>X + λI

)−1
X>y

This is equivalent to adding an extra term to RSS(w)

RSS(w)︷ ︸︸ ︷
1

2

{
w>X>Xw − 2

(
X>y

)>
w
}

+
1

2
λ‖w‖22︸ ︷︷ ︸

regularization

Benefits

• Numerically more stable, invertible matrix

• Force w to be small

• Prevent overfitting — more on this later

6

Applying this to our example

sqft (1000’s) bathrooms sale price (100k)

1 2 2

2 2 3.5

1.5 2 3

2.5 2 4.5

The ’bathrooms’ feature is redundant, so we don’t need w2

y = w0 + w1x1 + w2x2

= w0 + w1x1 + w2 × 2, since x2 is always 2!

= w0,eff + w1x1, where w0,eff = (w0 + 2w2)

= 0.45 + 1.6x1 Should get this

7

Applying this to our example

The ’bathrooms’ feature is redundant, so we don’t need w2

y = w0 + w1x1 + w2x2

= w0 + w1x1 + w2 × 2, since x2 is always 2!

= w0,eff + w1x1, where w0,eff = (w0 + 2w2)

= 0.45 + 1.6x1 Should get this

Compute the solution for λ = 0.5w0

w1

w2

 =
(
X>X + λI

)−1
X>y

w0

w1

w2

 =

 0.208

1.247

0.4166


8

How does λ affect the solution?

w0

w1

w2

 =
(
X>X + λI

)−1
X>y

Let us plot w ′o = w0 + 2w2 and w1 for different λ ∈ [0.01, 20]

0 5 10 15 20
Hyperparameter λ

0.50

0.75

1.00

1.25

1.50

P
ar

am
et

er
V

al
u

es

w0,eff

w1

Setting small λ gives almost the least-squares solution (w ′o = 0.45 and

w1 = 1.6), but it can cause numerical instability in the inversion.
9

How to choose λ?

λ is referred as hyperparameter

• Associated with the estimation method, not the dataset

• In contrast w is the parameter vector

• Use validation set or cross-validation to find good choice of λ

0 5 10 15 20
Hyperparameter λ

0.50

0.75

1.00

1.25

1.50

P
ar

am
et

er
V

al
u

es

w0,eff

w1

10

Review of Non-linear Basis

Functions

Is a linear modeling assumption always a good idea?

Figure 1: Sale price can saturate as sq.footage increases

x

t

0 1

−1

0

1

Figure 2: Temperature has cyclic variations over each year

11

General nonlinear basis functions

We can use a nonlinear mapping:

φ(x) : x ∈ RD → z ∈ RM

• M is dimensionality of new features z (or φ(x))

• M could be greater than, less than, or equal to D

We can apply existing learning methods on the transformed data:

• linear methods: prediction is based on w>φ(x)

• other methods: nearest neighbors, decision trees, etc

12

Regression with nonlinear basis

Residual sum of squares∑
n

[w>φ(xn)− yn]2

where w ∈ RM , the same dimensionality as the transformed features

φ(x).

The LMS solution can be formulated with the new design matrix

Φ =


φ(x1)>

φ(x2)>

...

φ(xN)>

 ∈ RN×M , w lms =
(

Φ>Φ
)−1

Φ>y

13

Example: Lots of flexibility in designing features!

x1, Area (1k sqft)
√
x1 Price (100k)

1 1 1

2.25 1.5 2

4 2 2.2

6.25 2.5 2.5

Price =
√
x1 is more accurate than Price = x1.

Figure 3: Add
√
x1 as a feature to allow us to fit square-root, instead of linear,

functions of the house area x1.

14

Example: Lots of flexibility in designing features!

x1, front (100ft) x2 depth (100ft) 10x1x2, Lot (1k sqft) Price (100k)

0.5 0.5 2.5 2

0.5 1 5 3.5

0.8 1.5 12 3

1.0 1.5 15 4.5

Figure 4: Instead of having frontage and depth as two separate features, it

may be better to consider the lot-area, which is equal to frontage×depth
15

Overfitting and Regularization

Non-linear basis functions: Polynomial regression

Polynomial basis functions

φ(x) =


1

x

x2

...

xM

⇒ f (x) = w0 +
M∑

m=1

wmx
m

Fitting samples from a sine function:

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

underfitting since f (x) is too simple

16

Adding high-order terms

M=3

x

t

M = 3

0 1

−1

0

1

M=9: overfitting

x

t

M = 9

0 1

−1

0

1

More complex features lead to better results on the training data, but

potentially worse results on new data, e.g., test data!

17

Overfitting can be quite disastrous

Fitting the housing price data with large M:

Predicted price goes to zero (and is ultimately negative) if you buy a big

enough house!

This is called poor generalization/overfitting.

18

Detecting overfitting

Plot model complexity versus objective function:

• X axis: model complexity, e.g., M

• Y axis: error, e.g., RSS, RMS

(square root of RSS), 0-1 loss

Compute the objective on a training and

test dataset.

M

E
R
M
S

0 3 6 9
0

0.5

1
Training
Test

As a model increases in complexity:

• Training error keeps improving

• Test error may first improve but eventually will deteriorate

19

Dealing with overfitting: Option 1

Try to use more training data

x

t

M = 9

0 1

−1

0

1

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

But getting a lot of data can be expensive and time-consuming

20

Dealing with overfitting: Option 2

Reduce the Number of Features

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

May not know which and how many features to remove

21

Dealing with overfitting: Option 3

Regularization Methods: Give preference to ‘simpler’ models

• How do we define a simple linear regression model — w>x?

• Intuitively, the weights corresponding to higher order terms should

not be “too large”

M = 0 M = 1 M = 3 M = 9

w0 0.19 0.82 0.31 0.35

w1 -1.27 7.99 232.37

w2 -25.43 -5321.83

w3 17.37 48568.31

w4 -231639.30

w5 640042.26

w6 -1061800.52

w7 1042400.18

w8 -557682.99

w9 125201.43 22

Regularization methods

Add a term to the objective function.

Choose the parameters to not just minimize risk, but avoid being large.

1

2

{
w>X>Xw − 2

(
X>y

)>
w
}

+
1

2
λ‖w‖22

Ridge regression is just regularized linear regression.

Advantages

• Forces the magnitude of w to be small

• Tries to find a simple model with few parameters

• Generalizes well to new data points

23

Ridge regression as regularization

w0

w1

w2

 =
(
X>X + λI

)−1
X>y

Let us plot w ′o = w0 + 2w2 and w1 for different λ ∈ [0.01, 20]

0 5 10 15 20
Hyperparameter λ

0.50

0.75

1.00

1.25

1.50

P
ar

am
et

er
V

al
u

es

w0,eff

w1

Setting small λ gives almost the least-squares solution, but it can cause

numerical instability in the inversion
24

Example: Effect of regularization

• Regularization makes the higher order wi ’s smaller

• Regularized polynomial fit will generalize much better

• As λ increases, the model becomes simpler

0.00 0.25 0.50 0.75 1.00

−2

0

2

M=9, λ = 0.001

sine

data

polyfit

regfit

0.00 0.25 0.50 0.75 1.00

−1

0

1

M=9, λ = 1

sine

data

polyfit

regfit

25

Probabilistic interpretation of regularization

Regularized Regression model: Y = w>X + η

• Y ∼ N(w>X , σ2
0) is a Gaussian random variable (as before)

• wd ∼ N(0, σ2) are i.i.d. Gaussian random variables (unlike before)

• We first choose the weight for each feature d , wd , from N(0, σ2).

Then for each input vector xn, draw yn from the distribution

N(w>xn, σ
2
0).

How do we estimate w for this model?

Maximum a posterior (MAP) estimate:

wmap = arg maxw p(w |D) = arg maxw
p(D|w)p(w)

p(D)

= arg maxw p(D|w)p(w)

26

Estimating w

Let x1, . . . , xN be i.i.d. with y |w , x ∼ N(w>x , σ2
0); wd ∼ N(0, σ2).

Given σ0, σ, we choose w so as to maximize:

p(D|w)p(w) =
∏

n

p(yn|xn,w)
∏

d

p(wd)

Now we know p(wd) ∝ exp
(
−w2

d

2σ2

)
and p(yn|xn,w) ∝ exp

(
−(wT xn−yn)

2

2σ2
0

)
:

log p(D|w)p(w) =
∑

n

log p(yn|xn,w) +
∑

d

log p(wd)

= −
∑

n(w>xn − yn)2

2σ2
0

−
∑

d

1

2σ2
w2

d + const

MAP estimate: wmap = arg maxw log p(D|w)p(w)

wmap = argminw

∑
n(w>xn − yn)2

2σ2
0

+
1

2σ2
‖w‖22

27

Maximum a posterior (MAP) estimate

E(w) =
∑

n

(w>xn − yn)2 + λ‖w‖22

where λ > 0 is used to denote σ2
0/σ

2. This extra term ‖w‖22 is called

regularization/regularizer and controls the magnitude of w .

• If λ→ +∞, then σ2
0 � σ2: the variance of noise is far greater than

what our prior model can allow for w . In this case, our prior model

on w will give a simpler model. Numerically,

wmap → 0

• If λ→ 0, then we trust our data more. Numerically,

wmap → w lms = argmin
∑

n

(w>xn − yn)2

28

Hyperparameter Tuning and

Cross-Validation

How should we choose the right amount of regularization?

Can we tune λ on the training dataset?

No: as this will always set λ to zero, i.e., no regularization, defeating our

intention of controlling model complexity

λ is thus a hyperparameter. To tune it,

• We can use a validation set or do cross validation.

• Pick the value of λ that yields lowest error on the testing dataset.

Similar idea applies to tuning learning rate η (or any other

hyperparameter) as well.

29

Tuning by using a validation dataset

Training data are used to learn f (·).

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}

Test data are used to assess the prediction error.

• M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
• They are used for assessing how well f (·) will do in predicting an

unseen x /∈ Dtrain

Validation data are used to optimize hyperparameter(s).

L samples/instances: Dval = {(x1, y1), (x2, y2), · · · , (xL, yL)}

Training data, validation and test data should not overlap!

30

Recipe

• For each possible value of the hyperparameter (say

λ = 1, 3, · · · , 100)

• Train a model using Dtrain

• Evaluate the performance of the model on Dval

• Choose the model with the best performance on Dval

• Evaluate this model on Dtest to get the final prediction error

31

Cross-validation

What if we do not have validation data?

• We split the training data into

S equal parts.

• We use each part in turn as a

validation dataset and use the

others as a training dataset.

• We choose the hyperparameter

such that the model performs

the best (based on average,

variance, etc.)

Figure 5: S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.

32

Example: Hyper-parameter Tuning λ

• λ = 10−4 gives the smallest validation loss

• Strikes a balance between over- and under-fitting

10−7 10−5 10−3

Regularization term λ

0.00

0.01

0.02

0.03

0.04
L

os
s

TrainLoss

ValLoss

33

Example: Hyper-parameter Tuning M

• Considering polynomial regression without regularization

• M = 3 or M = 4 gives the smallest validation loss

• Strikes a balance between over- and under-fitting

2 4 6 8
Degree of the Polynomial M

0.0

0.1

0.2

0.3

L
os

s

TrainLoss

ValLoss

34

Bias-Variance Trade-off

Empirical Risk Minimization

Supervised learning

We aim to build a function h(x) to predict the true value y associated

with x . If we make a mistake, we incur a loss

`(h(x), y)

Example:

Quadratic loss function for regression when y is continuous:

`(h(x), y) = [h(x)− y]2

Ex: when y = 0

35

How good is our predictor?

Risk:

Given the true distribution of data p(x , y), the risk of a given predictor

h(x) is its expected loss `:

R[h(x)] =

∫
x,y
`(h(x), y)p(x , y)dxd y

However, we cannot compute R[h(x)] (we do not know p), so we use the

empirical risk, given a training dataset D:

Remp[h(x)] =
1

N

∑
n

`(h(xn), yn)

Intuitively, as N → +∞,

Remp[h(x)]→ R[h(x)]

36

How could this go wrong?

So far, we have been doing empirical risk minimization (ERM)

For linear regression, h(x) = w>x , and we use squared loss `.

Remp[h(x)] =
1

N

∑
n

`(h(xn), yn)

R[h(x)] =

∫
x,y
`(h(x), y)p(x , y)dxdy

What could go wrong with ERM?

• Limited Function Class: The function h(x) is restricted to a limited

class (e.g. linear functions), which does not allow us to perfectly fit

y , even if we had infinitely many training data points.

• Limited Data: We don’t know p(x , y), so we must hope that we

have enough training data that the empirical risk approximates the

real risk. Otherwise, we will overfit to the training data.

37

Bias-Variance Trade-off: Intuition

• High Bias: Model is not rich enough to fit the training dataset and

achieve low training loss

• High Variance: If the training dataset changes slightly, the model

changes a lot

• Regularization helps find a middle ground

Figure 6: High Bias
Figure 7: Just Right Figure 8: High Variance

38

Bias/variance tradeoff for regression

Goal: to understand the sources of prediction errors

• D: our training data

• hD(x): our prediction function

We are using the subscript D to indicate that the prediction function

is learned on the specific set of training data D
• `(h(x), y): our square loss function for regression

`(hD(x), y) = [hD(x)− y]2

• Unknown joint distribution p(x , y)

39

The effect of finite training samples

Every training sample D is a sample from the following joint

distribution of all possible training datasets

D ∼ P(D) =
N∏

n=1

p(xn, yn)

Thus, the prediction function hD(x) is a random function with respect to

this distribution of possible training datasets. So is also its risk

R[hD(x)] =

∫
x

∫
y

[hD(x)− y]2p(x , y)dxdy

We will now evaluate the expected risk EDR[hD(x)]: the average risk

over the distribution of possible training datasets, P(D).

40

Bias-Variance Trade-off: Intuition

Error decomposes into 3 terms

EDR[hD(x)] = variance + bias2 + noise

We will prove this result, and interpret what it means...

Figure 9: High Bias
Figure 10: Just Right Figure 11: High Variance

41

Average over the distribution of the training data

Expected risk

ED [R[hD(x)]] =

∫
D

∫
x

∫
y

[hD(x)− y]2p(x , y)dxdy P(D)dD

Namely, the randomness with respect to D is marginalized out.

Averaged prediction

EDhD(x) =

∫
D
hD(x)P(D)dD

Namely, if we have seen many training datasets, we predict with the

average of the prediction functions learned on each training dataset.

42

Variance

We will subtract the averaged prediction from the averaged risk

EDR[hD(x)] =

∫
D

∫
x

∫
y

[hD(x)− y]2p(x , y)dxdy P(D)dD

=

∫
D

∫
x

∫
y

[hD(x)−EDhD(x)

+EDhD(x)− y]2p(x , y)dxdy P(D)dD

=

∫
D

∫
x

∫
y

[hD(x)− EDhD(x)]2p(x , y)dxdy P(D)dD︸ ︷︷ ︸
variance

+

∫
D

∫
x

∫
y

[EDhD(x)− y]2p(x , y)dxdy P(D)dD

43

Where does the cross-term go?

It is zero∫
D

∫
x

∫
y

[hD(x)− EDhD(x)][EDhD(x)− y]p(x , y)dxdy P(D)dD

=

∫
x

∫
y

{∫
D

[hD(x)− EDhD(x)]P(D)dD
}

[EDhD(x)− y]p(x , y)dxdy

= 0← (the integral within the braces vanishes, by definition)

44

Analyzing the variance

Understanding the variance∫
D

∫
x

∫
y

[hD(x)− EDhD(x)]2p(x , y)dxdy P(D)dD

=

∫
x

∫
y

(∫
D

[hD(x)− EDhD(x)]2 P(D)dD
)
p(x , y)dxdy

For each (x , y) pair, we compute the squared difference of hD(x) (the

prediction with training dataset D) and the averaged prediction EDhD(x):

the average (over all (x , y) ∼ p) variance of the prediction over D.

How can we reduce the variance?

• Use a lot of data (ie, increase the size of D)

• Use a simple h(·) so that hD(x) does not vary much across different

training datasets. An extreme example is h(x) = const.

45

The remaining item

EDR[hD(x)] =

∫
D

∫
x

∫
y

[hD(x)− EDhD(x)]2p(x , y)dxdy P(D)dD

+

∫
D

∫
x

∫
y

[EDhD(x)− y]2p(x , y)dxdy P(D)dD

The integrand has no dependency on D anymore and simplifies to∫
x

∫
y

[EDhD(x)− y]2p(x , y)dxdy

We will apply a similar add-and-subtract trick, by using an averaged

target y (what we want to predict from x):

Ey [y |x] =

∫
y

yp(y |x)dy

46

Bias and noise

Decompose again∫
x

∫
y

[EDhD(x)− y]2p(x , y)dxdy

=

∫
x

∫
y

[EDhD(x)−Ey [y |x] + Ey [y |x]− y]2p(x , y)dxdy

=

∫
x

∫
y

[EDhD(x)− Ey [y |x]]2p(x , y)dxdy︸ ︷︷ ︸
bias2

+

∫
x

∫
y

[Ey [y |x]− y]2p(x , y)dxdy︸ ︷︷ ︸
noise

Where is the cross-term?

Take-home exercise: Show that it is zero

47

Analyzing the noise

How can we reduce noise?

∫
x

∫
y

[Ey [y |x]−y]2p(x , y)dxdy =

∫
x

(∫
y

[Ey [y |x]− y]2p(y |x)dy

)
p(x)dx

There is nothing we can do. This quantity depends on p(x , y) only;

choosing h(·) or the training dataset D will not affect it. Note that the

integral inside the parentheses is the variance (noise) of the posterior

distribution p(y |x) at the given x .

Figure 12: Somewhat difficult posterior

y

p(y|x)

Ey[y]

Figure 13: Somewhat easy posterior

y

p(y|x)

Ey[y]

48

Analyzing the bias term

Understanding the bias∫
x

∫
y

[EDhD(x)− Ey [y |x]]2p(x , y)dxdy

For each (x , y) pair, we compute the loss of our averaged prediction

EDhD(x) compared to the expected value of y given x , which we

compute as Ey [y |x] =
∫

y
yp(y |x)dy . Then we take the average over all

pairs (x , y) ∼ p(x , y).

How can we reduce the bias?

It can be reduced by using more complex models. We shall choose h(·)
to be as flexible as possible: the better h(·) approximates Ey [y |x], the

smaller the bias. However, this will increase the variance term.

49

Bias/variance tradeoff

Error decomposes into 3 terms

EDR[hD(x)] = variance + bias2 + noise

where the first and the second term are inherently in conflict in terms of

choosing what kind of h(x) we should use (unless we have an infinite

amount of data).

If we can compute all terms analytically, they will look like this

ln λ

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15

(bias)2

variance

(bias)2 + variance
test error

50

Summary of risk components

The average risk (with quadratic loss) can be decomposed as:

EDR[hD(x)] =

∫
D

∫
x

∫
y

[hD(x)− EDhD(x)]2p(x , y)dxdy P(D)dD︸ ︷︷ ︸
variance: error due to training dataset

+

∫
x

∫
y

[EDhD(x)− Ey [y |x]]2p(x , y)dxdy︸ ︷︷ ︸
bias2: error due to the model approximation

+

∫
x

∫
y

[Ey [y |x]− y]2p(x , y)dxdy︸ ︷︷ ︸
noise: error due to randomness of y

Here we define: hD(x) as the output of the model trained on D,

EDhD(x) as the expectation of the model over all datasets D, and

Ey [y |x] as the expected value of y .

51

Example: Why regularized linear regression could be helpful?

Model

h(x) = w>x

Consider the best possible (linear) h∗(x)

w∗ = argminw

∫
x
[Ey [y |x]−w>x]2p(x)dx

Note that this linear model assumes the knowledge of joint distribution,

thus, not achievable. Intuitively, it is the best linear model that can

predict the data most accurately.

52

More refined decomposition of the bias

∫
x
[EDhD(x)− Ey [y |x]]2p(x)dx =

∫
x
[h∗(x)− Ey [y |x]]2p(x)dx

+

∫
x
[EDhD(x)− h∗(x)]2p(x)dx

• Model bias: the price we pay for choosing linear functions to model

data. This is the difference between the prediction of the best

possible linear model and the actual target.

• Estimation bias: the difference between the optimal model and the

estimated model.

Normally, the estimation bias is zero if we do not regularize.

53

Bias/variance tradeoff for regularized linear regression

We can only adjust estimation bias∫
x
[EDhD(x ;λ)− h∗(x)]2p(x)dx

where h(x ;λ) is the estimated model with regularized linear regression

(parameterized with λ).

This term will not be zero anymore!

Thus, bias goes up.

But, as long as this is balanced with a decrease in variance, we are willing

to do so.

54

Visualizing the tradeoff

55

Lecture Summary

• Validation datasets (or cross-validation) are used to determine

model hyperparameters.

• Many ML models use empirical risk minimization to find the optimal

parameters.

• ERM leads to an error consisting of bias, variance, and noise terms.

• Variance: Due to only optimizing over an empirical sample of the

complete (x , y) distribution.

• Bias: Due to our choosing a model that does not fit the exact (x , y)

relationship.

• Noise: Due to the output y ’s randomness with respect to the input x .

• Choosing a more complex model improves the bias, but increases the

variance (and vice versa for less complex models).

• The noise is independent of the model that we choose.

56

	Review of Ridge Regression
	Review of Non-linear Basis Functions
	Overfitting and Regularization
	Hyperparameter Tuning and Cross-Validation
	Bias-Variance Trade-off

