
Homework #4

ECE 461/661: Introduction to Machine Learning

Prof. Carlee Joe-Wong and Prof. Gauri Joshi

Due: Wednesday March 18th, 2020 at 8:59PM PT / 11:59PM ET

Please remember to show your work for all problems and to write down the names of any students
that you collaborate with. The full collaboration and grading policies are available on the course website:
https://www.andrew.cmu.edu/course/18-661/.

Your solutions should be uploaded to Gradescope (https://www.gradescope.com/) in PDF format by
the deadline. We will not accept hardcopies. If you choose to hand-write your solutions, please make sure
the uploaded copies are legible. Gradescope will ask you to identify which page(s) contain your solutions to
which problems, so make sure you leave enough time to finish this before the deadline. We will give you a
30-minute grace period to upload your solutions in case of technical problems.

1 k-Nearest Neighbors Decision Boundary [15 points]

For some applications, it may make sense to perform k-nearest neighbors with respect to a distance other
than the usual Euclidean distance. In this problem, we will look at the k-nearest neighbor problem when
the distance between the points is the following modified form of the Euclidean distance. Given two vectors
v1 = (x1, y1), v2 = (x2, y2), the modified distance measure dM (v1, v2) is defined as:

dM (v1, v2) =

√
1

2
(x1 − x2)2 + (y1 − y2)2

Consider the following two labelled training datasets, each of which consists of three data points with two
input features:

D1 = {((0, 0), 1), ((2, 2), 2), ((4, 0), 3)}
D2 = {((0, 0), 1), ((1, 1), 1), ((−1, 1), 2)} .

a. First consider the 1-nearest neighbor classifier on the data points in D1 with respect to the usual
Euclidean distance. Draw the decision boundaries for the classifier in the (x1, x2) plane (note that
there are three possible labels, 1, 2, 3; and thus three possible classes). Write down the equations of the
decision boundaries. Clearly mark each region in your drawing with the label assigned by the classifier
to a test example in this region.

b. Now, consider the 1-nearest neighbor classifier on the data points in D1 with respect to the modified
Euclidean distance dM . In a separate figure, draw the decision boundaries for this classifier in the
(x1, x2) plane. Write down the equations for the different segments of the decision boundary, and
clearly mark each region in your drawing with the label assigned by the classifier to a test example in
this region.

c. Repeat part (a), i.e. draw the decision boundary with respect to Euclidean distance in the (x1, x2)
plane, for training data points in D2. Note that points in D2 have two possible labels (1 and 2).

d. Repeat part (b), i.e. draw the decision boundary with respect to the modified Euclidean distance in
the (x1, x2) plane, for training data points in D2.

1

https://www.andrew.cmu.edu/course/18-661/
https://www.gradescope.com/

2 Entropy and KL Divergence [10 points]

When discussing decision trees, we introduced the concepts of entropy H(X) and information gain H(Y)−
H(Y |X) for discrete random variables X,Y that take on values in a set X and a set Y, respectively. In
information theory, the information gain is also referred to as mutual information I(X;Y). We can define:

H(X) = −
∑
x∈X

Pr(X = x) log2 Pr(X = x) (1)

H(Y |X) = −
∑
x∈X

∑
y∈Y

Pr(X = x, Y = y) log2 Pr(Y = y|X = x) (2)

In this question, we will derive some useful properties of mutual information and relate it to the relative
entropy. Using the above definitions, answer the following questions:

2.1 KL Divergence [5 points]

The Kullback–Leibler divergence D(P (X)||Q(X)) between two probability distributions P (X) and Q(X)
over a discrete random variable X taking values in X is defined as:

D(P (X)||Q(X)) =
∑
x∈X

P (X = x) log2

(
P (X = x)

Q(X = x)

)
This quantity is also known as relative entropy and measures the similarity of the P and Q distributions.

a. Show that
D(P (X)||Q(X)) = H(P,Q)−H(P)

where we define H(P,Q) = −
∑

x∈X P (X = x) log2Q(X = x), called the cross entropy between the
distributions P and Q.

b. Prove that the KL-divergence is always non-negative (i.e., D(P (X)||Q(X)) ≥ 0).

Hint: Jensen’s inequality is a useful result that states that for any convex function f(x), E[f(x)] ≥ f(E[x]).
You may use this result without proving it.

2.2 Chain Rule[5 points]

Given the joint probability distributions P (X = x, Y = y) and Q(X = x, Y = y) of two discrete random
variables X and Y , the conditional divergence between the two corresponding conditional probability distri-
butions P (Y = y|X = x) and Q(Y = y|X = x) is obtained by computing the divergence between P and Q
for all possible values of x ∈ X and then averaging over these values of x. Formally it is defined as:

D(P (Y |X)||Q(Y |X)) =
∑
x∈X

P (X = x)
∑
y∈Y

P (Y = x|X = x) log
P (Y = y|X = x)

Q(Y = y|X = x)
,

where we define P (X = x) =
∑

y∈Y P (X = x, Y = y) as the probability distribution of X corresponding to
the joint distribution P (X = x, Y = y).

Show that
D(P (X,Y)||Q(X,Y)) = D(P (X)||Q(X)) +D(P (Y |X)||Q(Y |X))

where P (X,Y), P (Y |X), P (X) and Q(X,Y), Q(Y |X), Q(X) are the joint, conditional and marginal distri-
butions induced by P and Q respectively.

2

3 Boosting [25 points]

We learned about boosting in lecture, and the topic is covered in Murphy 16.4. On page 555 Murphy claims
that “it was proved that one could boost the performance (on the training set) of any weak learner arbitrarily
high, provided the weak learner could always perform slightly better than chance.” We will now verify this
statement in the AdaBoost framework.

(1) [5 points] Given a set of N observations (xj , yj) where yj is the label yj ∈ {−1, 1}, let ht(x) be the
weak classifier at step t and let βt be its weight. First we note that the final classifier after T steps is
defined as:

H(x) = sgn

{
T∑

t=1

βtht(x)

}
= sgn{f(x)},

where

f(x) =

T∑
t=1

βtht(x).

Show that:

εTraining =
1

N

N∑
j=1

1{H(xj)6=yj} ≤
1

N

N∑
j=1

exp(−f(xj)yj),

where 1{H(xj)6=yj} is 1 if H(xj) 6= yj and 0 otherwise.

(2) [8 points] The weight for each data point j at step t+ 1 can be defined recursively by:

w
(t+1)
j =

w
(t)
j exp(−βtyjht(xj))

Zt
,

where Zt is a normalizing constant ensuring the weights sum to 1:

Zt =

N∑
j=1

w
(t)
j exp(−βtyjht(xj)).

Show that:

1

N

N∑
j=1

exp(−f(xj)yj) =

T∏
t=1

Zt

(3) By combining your results to parts a and b, you have shown that the training error εTraining is bounded

above by
∏T

t=1 Zt. At step t the values Z1, Z2, . . . , Zt−1 are already fixed. Therefore, at step t we can
choose βt to minimize Zt. Let

εt =

m∑
j=1

w
(t)
j 1{ht(xj)6=yj}

be the weighted training error for weak classifier ht(x). Then we can re-write the formula for Zt as:

Zt = (1− εt) exp(−βt) + εt exp(βt).

(a) [4 points] First, find the value of βt that minimizes Zt. Then show that:

Zopt
t = 2

√
εt(1− εt).

3

(b) [4 points] Assume we choose βt to have this optimal value, and thus that Zt = Zopt
t . We can

express the training error εt = 1
2−γt, so that γt > 0 implies that the weak classifier ht(x) performs

better than random (i.e., the weighted training error εt <
1
2) and γt < 0 implies that it performs

worse than random. Then show that:

Zopt
t = Zt ≤ exp(−2γ2t).

You may take as given the fact that ln(1− x) ≤ −x for 0 ≤ x < 1.

Putting together this result with your results from parts a and b, you have shown that:

εtraining ≤
T∏

t=1

Zt ≤ exp(−2

T∑
t=1

γ2t)

(c) [4 points] Finally, use the inequality above to show that if each classifier is better than random
(i.e., there exists a constant γ > 0 such that γt ≥ γ for all t) then:

εtraining ≤ exp(−2Tγ2),

which shows that the training error can be made arbitrarily small with enough steps (a large
enough T).

4 Programming: AdaBoost Algorithm [25 points]

In this section, you will implement the AdaBoost algorithm with decision stumps, i.e., 1-level decision trees.
You will need to implement the adaboost algorithm from scratch and train and test the classifier on the
dataset provided. We provide suggestions for designing your code and a corresponding template as noted
below, but you are not required to follow these suggestions.

Figure 1: Figure 2: Example dataset. Each point (x1, x2) ∈ [−2, 2]× [−2, 2] and yi ∈ {−1, 1}

The dataset for this task is synthetically generated and has two entries xi = (x1, x2) and y. Here xi =
(x1, x2) ∈ [−2, 2]× [−2, 2] is the i-th instance and yi ∈ {−1, 1} is its corresponding label. The training and
test dataset are in ”train-adaboost.csv” and ”test-adaboost.csv” respectively.

4

https://drive.google.com/open?id=1GRQGqWTfcFCYvd9l8ppbbCASBxfwVEdA
https://drive.google.com/open?id=1VbgbqnshBi1dQ9Xs4ooCbytl9sdFHT0o

a. Suggested structure for the programming assignment: Consider writing the following functions:

(a) read data: This function reads the data from the input file.

(b) weak classifier: This function finds the best weak classifier, which is a 1-level decision tree.
Defining n as number of training points and d as the number of features per data point, the
inputs to the function should be the input data (n × d array), the true labels (n × 1 array) and
the current distribution D (n × 1 array) and you should return the best weak classifier with the
best split based on the error. Some of the things to include in the output can be: best feature
index,best split value, label, value of βt and predicted labels by the best weak classifier. Note: βt
should be a (T × 1 array, for t = 1 . . . T , and T denotes the number of iterations that you choose
to run the boosting algorithm)

(c) update weights: This function computes the updated distribution Dt+1, The inputs to this
function should be current distribution D (n × 1 array), the value of βt, the true target values
(n× 1 array) and the predicted target values (n× 1 array). And the function should output the
updated distribution D.

(d) adaboost predict: This function returns the predicted labels for each weak classifier. The
inputs: the input data (n× d array), the array of weak classifiers (T × 3 array) and the array of
βt for t = 1 . . . T (T × 1 array) and output the predicted labels (n× 1 array)

(e) eval model: This function evaluates the model with test data by measuring the accuracy. As-
suming we have m test points, the inputs should be the test data (m × d array), the true labels
for test data (m × 1 array), the array of weak classifiers (T × 3 array), and the array of βt for
t = 1 . . . T (T × 1 array). The function should output: the predicted labels (m× 1 array) and the
accuracy.

(f) adaboost train: This function trains the model by using AdaBoost algorithm.

Inputs:
- The number of iterations (T)
- The input data for training data (n× d array)
- The true labels for training data (n× 1 array)
- The input features for test data (m× 2 array)
- The true labels for test data (m× 1 array)
Output:
- The array of weak classifiers (T × 3 array)
- The array of βt for t = 1 . . . T (T × 1 array)

(g) main:

def main():

num_iter = 400

X_train, y_train = read_data("train_adaboost.csv")

X_test, y_test = read_data("test_adaboost.csv")

hlist, alphalist = train(num_iter, X_train, y_train, X_test, y_test)

final_pred, final_acc = eval_model(X_test, y_test, hlist, alphalist)

NOTE: You may use the function signatures mentioned above or this code template (linked) that uses the
same functions but as a class and thus makes use of class attributes. You do not necessarily have to use
the suggested function signatures or code template. A different working code structure is acceptable.

a. Test your classifier by training with varying the number of iteration(num iter) from 1 to 400; and plot
the test accuracy vs the number of iterations. Also report the final test accuracy of the classifier when
trained for 400 iterations.

5

https://drive.google.com/open?id=1u9ArO33HJXCUUpZuixrtokJNHdpE7SUa

	k-Nearest Neighbors Decision Boundary [15 points]
	Entropy and KL Divergence [10 points]
	KL Divergence [5 points]
	Chain Rule[5 points]

	Boosting [25 points]
	Programming: AdaBoost Algorithm [25 points]

