
Homework #6

ECE 461/661: Introduction to Machine Learning

Prof. Gauri Joshi and Prof. Carlee Joe-Wong

Due: April 12, 2020 at 8:59PM PT / 11:59PM ET

Please remember to show your work for all problems and to write down the names of any students
that you collaborate with. The full collaboration and grading policies are available on the course website:
https://www.andrew.cmu.edu/course/18-661/.

Your solutions should be uploaded to Gradescope (https://www.gradescope.com/) in PDF format by
the deadline. We will not accept hardcopies. If you choose to hand-write your solutions, please make sure
the uploaded copies are legible. Gradescope will ask you to identify which page(s) contain your solutions to
which problems, so make sure you leave enough time to finish this before the deadline. We will give you a
30-minute grace period to upload your solutions in case of technical problems.

1 EM [25 points]

Suppose X1, . . . , XN are i.i.d random variables with the density function fX(x, λ) = λe−λx, for x ≥ 0 and
0 otherwise. We observe Yi = min{Xi, ci} for some fixed and known ci. In this problem, you will estimate
the value of λ using the EM algorithm. In particular, the variables Xi’s correspond to the missing or latent
variables.

(a) Show that the log-likelihood L(X1, . . . , Xn|λ) in terms of the latent (unobserved) variables Xi is

L(X1, . . . , Xn|λ) = n log λ− λ
n∑
i=1

Xi.

(b) What is the conditional expectation of Xi assuming that you observe Yi = yi < ci?

(c) Now suppose that Yi = ci. What is the conditional expectation of Xi given that you observe Yi = ci?
Hint: You may want to use the memorylessness property of the exponential distribution.

(d) Suppose we observe y1, ..., yN . Let Ii be an indicator denoting if yi < ci. In other words, Ii = 1 if
yi < ci (as in part (b) above)), and Ii = 0 if yi = ci (as in part (c) above). After t rounds of the EM
algorithm, we have got an estimator λt. Using your results from parts (a), (b), and (c) above, write
down the E-Step for the t+ 1st round, i.e., derive Q(λ|λt) = E[L|y, λt].

(e) Now write down the M-Step from the t+ 1st round and calculate the value of λt+1.

2 3-Dimensional Principal Component Analysis [25 points]

In this problem, we will perform PCA on 3-dimensional data step by step. We are given three data points:

x1 = [0,−1,−2],x2 = [1, 1, 1],x3 = [2, 0, 1],

and we want to find 2 principal components of the given data.
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a. First, find the covariance matrix CX = XTX where X =

x1

x2

x3

. Then, find the eigenvalues and the

corresponding eigenvectors of CX . (Feel free to use any numerical analysis program such as numpy,
e.g., numpy.linalg.eig can be useful. Also make sure to center the data X first.)

b. Using the result above, find the first two principal components of the given data.

c. Now we want to represent the data x1, · · · ,x3 using a 2-dimensional subspace instead of a 3-dimensional
one. PCA gives us the 2-D plane which minimizes the difference between the original data and the
data projected to the 2-dimensional plane. In other words, xi can be represented as:

x̃i = ai1u1 + ai2u2 + b3u3, (1)

where u1 and u2 are the principal components we found in 3.b., and u3 is a vector orthonormal to u1

and u2. Figure 1 gives an example of what this might look like.

Figure 1: Example of 2-D plane spanned by the first two principal components.

Find ai1, ai2 for i = 1, 2, 3 and b3. Then, find the x̃i’s and the difference between x̃i and xi, i.e.,
||x̃i − xi||2 for i = 1, 2, 3. (Again, feel free to use any numerical analysis program to get the final
answer. But, show your calculation process.)

Hint: b3 can be easily obtained from x = 1
3 (x1 + x2 + x3).

3 GMM [25 points]

In this problem, we have a dataset that has K components {C1, C2, . . . , CK}. Each component is generated
from a normal distribution ∼ N (µi,Σi). In other words, each data point x is generated as follows:

• Choose a component y = 1, 2, . . . ,K with a probability P (y = i) = πi for i = 1, 2, . . . ,K.

• Draw a sample x ∼ N (µi,Σi).

Note that our dataset therefore satisfies the assumptions of a Gaussian mixture model. Now we can find the
following probability distributions of x:

p(x|y = i) ∼ N (µi,Σi), p(x) =

K∑
k=1

p(x|y = i)P (y = i).

At test time, we wish to assign a cluster to each data point x. We can do so by finding the component
that yields the maximum probability for the test point x:

argmaxk p(y = k|x)
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Now suppose that we are given a set D of N example data points, each consisting of a d dimensional
vector. More formally, our data D = {x1, x2, x3 . . . xN} where each xi ∈ Rd. Our task is to assign each
example into one of the K clusters using the above formulation. The parameters for the above formulation are
θ = (π1, π2 . . . πK , µ1, µ2 . . . µK ,Σ1,Σ2 . . .ΣK), hence the problem reduces to estimating these parameters.

Dataset In the file gmm data.txt, each row is a unique vector of 5 dimensions. There are 3000 unique
examples. Hence N = 3000, d = 5, and we want to group these points into three clusters (K = 3). They are
generated as per the generation process outlined above. To visualize the dataset, we have plotted the first 2
dimensions (i.e xi1, xi2 ) of each i from 1 to 3000 (Figure 2)

Figure 2: The first two dimensions of the dataset, different colors denote different clusters.

Convention For consistency, we refer to the leftmost cluster (i.e., one with the least µi1) as the Blue
cluster (denoted by blue color), the middle cluster as the Green cluster (denoted by green color), and the
rightmost (the one with the largest µi1) cluster as the Red cluster (denoted by red color). Figure 2 also
adheres to this convention.

Problems Now, please answer the following questions. Please include your code in the final PDF
you turn in for full credit.

(a) Assuming that Σi = σ2
i I, compute and write below the means µ1, µ2, µ3 and the standard deviations

σ1, σ2, σ3. We highly recommend that you use the GaussianMixture model from sklearn. (Please use
random initialization for this part, and a default convergence threshold/tolerance of 0.001)

(b) From these computed means and std. deviations, cluster all the 3000 points, and plot three figures

– Plot the first two dimensions (xi1, xi2) with their cluster assignments. (similar to Figure 2)

– Plot the third and fourth dimensions (xi3, xi4) with their cluster assignments.

– Plot the fourth and fifth dimensions (xi4, xi5) with their cluster assignments.

(c) For this subquestion, you are not permitted to use any library function that performs the EM algorithm,
and you are instead supposed to write your own EM algorithm to estimate the means µ1, µ2, µ3. You
can assume that values of π1, π2, π3 and σ1, σ2, σ3 are known and reuse the values that you computed in
part (a) (They can be found in GaussianMixture.weights and GaussianMixture.covariances ). Write
down your E step and M step to estimate µ1, µ2, µ3. For the programming, please use a convergence
threshold/tolerance of 0.001.
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(d) We now relax the assumption that π1, π2, π3 are known. Modify your EM algorithm to simultaneously
estimate means µ1, µ2, µ3 and the component probabilities π1, π2, π3. You can still assume that σ1, σ2
and σ3 are known and use their values from the solution above. Write down your E step and M step.
For the programming, please use convergence threshold/tolerance of 0.001. For this part too, you are
not permitted to use library functions that perform EM algorithm.
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