
Homework #3

18-461/661: Intro to ML for Engineers

Prof. Gauri Joshi and Prof. Carlee Joe-Wong

Due: Friday Feb 21st, 2020 at 8:59PM PT / 11:59PM ET

Please remember to show your work for all problems and to write down the names of any students
that you collaborate with. The full collaboration and grading policies are available on the course website:
https://www.andrew.cmu.edu/course/18-661/.

Your solutions should be uploaded to Gradescope (https://www.gradescope.com/) in PDF format by
the deadline. We will not accept hardcopies. If you choose to hand-write your solutions, please
make sure your handwriting on the uploaded copies is legible. Gradescope will ask you to identify
which page(s) contain your solutions to which problems, so make sure you leave enough time to finish this
before the deadline. We will give you a 30-minute grace period to upload your solutions in case of technical
problems.

1 Kernel SVM [20 points]

In this question, we consider the kernel version of SVMs, which has the following primal formulation:

min
w,b,ξi

1

2
‖w‖22 + C

n∑
i=1

ξi

s.t. y(i)(wTφ(x)(i) + b) ≥ 1− ξi,∀i = 1, ..., n

ξi ≥ 0,∀i = 1, ..., n

where x(i) ∈ Rp, i = 1, 2, ..., n is the original training data associated with the label y(i) ∈ {−1, 1}, C > 0 is
a constant, and the function φ : Rp → Rd maps the original data x(i) to a new feature vector φ(x(i)) in Rd.
We optimize over the model weights w ∈ Rd and b ∈ R, as well as the slack variables ξi ∈ R, i = 1, 2, ..., n.

a. [5 points] Recall that the dual formulation of the SVM problem can be written as

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)Tφ(xn) s.t.
∑
n

αnyn = 0, 0 ≤ αn ≤ C

where αn denotes the dual variables. Suppose we have obtained the solution of the dual problem,
denoted as α?i for i = 1, 2, ..., n. In lecture, we saw that when we do not define the transformation
φ, the optimal w? and b? can be written in terms of the optimal dual variables α?i . Given the SVM
formulation with the transformation φ as above, find w? and b? in terms of the optimal dual variables
α?i .

b. [4 points] How does the dual formulation change when we use kernel functions, i.e. k(u,v), defined
over a pair of inputs (u,v)? The kernel function k(u,v) measures similarity between inputs (u,v).

c. Consider a test data point z ∈ Rp. We wish to use the kernel SVM classifier derived above to make a
classification decision for z.
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(a) Original dataset. (b) Transformed dataset.

Figure 1: Example of original and transformed data for Q1c.

(1) [3 points] Under what conditions would we classify z as having the label 1?

(2) [4 points] Suppose that the mapping φ(x) is given by the following for x = [x1, · · · , xp]T :

φ(x) =

x2p, x2p−1, · · · , x21︸ ︷︷ ︸
length p

,
√

2xpxp−1, · · · ,
√

2xpx1︸ ︷︷ ︸
length p−1

,
√

2xp−1xp−2, · · · ,
√

2xp−1x1︸ ︷︷ ︸
length p−2

, · · · ,
√

2x2x1


T

.

Note that the variable under the brace denotes the number of terms in the brace. For example, if
p = 2, then

φ(x) =
(
x22, x

2
1,
√

2x2x1

)T
,

which transforms the 2-dimensional dataset shown in Figure 1a (not linearly separable) to the
linearly separable 3-dimensional dataset in Figure 1b.

What is the time complexity of making the classification decision (i.e., how does the number of
operations required to compute the condition above grow with p)? Write your answer using big-O
notation.1

(3) [4 points] Define the kernel function K(u,v) = φ(u)Tφ(v) where φ(·) has the same definition as
above. What is the time complexity of making the classification decision if we directly compute
K(·, ·) without computing φ(u) and φ(v)? How does this compare to the complexity when we
directly compute φ as above?

Hint: When p = 2, it is easy to see that K(u,v) = u21v
2
1 + 2u1u2v1v2 + u22v

2
2 = (u1v1 + u2v2)2 =

(uTv)2. Can you generalize this expression for p > 2?

2 Double Counting the Evidence [20 points]

Consider the two-class classification problem where the class label y ∈ {0; 1} and each training example X
has 2 binary attributes X1, X2 ∈ {0; 1}. Let the class prior be Pr(Y = 1) = 0.5 and also let

Pr(X1 = 1 | Y = 1) = 0.8, Pr(X1 = 0 | Y = 0) = 0.7,

Pr(X2 = 1 | Y = 1) = 0.5, Pr(X2 = 0 | Y = 0) = 0.9.

So, attribute X1 provides slightly stronger evidence about the class label than X2.

1If you are unfamiliar with big-O notation, this blog post has a good tutorial: https://rob-bell.net/2009/06/

a-beginners-guide-to-big-o-notation/.
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a. [6 points] Assume X1 and X2 are truly independent given Y . Write down the Naive Bayes decision
rule given X1 = x1 and X2 = x2. Fill out the following table of predictions, f(X1, X2) ∈ {0, 1}, based
on the Naive Bayes decision rule for each of the 4 settings for X1, X2. Please show your calculations.

X1 X2 f(X1, X2)
0 0
0 1
1 0
1 1

b. [6 points] For the Naive Bayes decision function f(X1, X2), the error rate is:∑
X1,X2,Y

I(Y 6= f(X1;X2)) Pr(X1, X2, Y ),

where I(Y 6= f(X1, X2)) = 1 if Y 6= f(X1;X2) and 0 otherwise. For this question, we will assume
that the true data distribution is exactly the same as the Naive Bayes distribution, so we can write
Pr(X1, X2|Y ) as Pr(Y ) Pr(X1 | Y ) Pr(X2 | Y ). Show the error rate of the Naive Bayes Classifier is
0.235.

c. Now, suppose that we create a new attribute X3, which is an exact copy of X2. So, for every training
example, attributes X2 and X3 have the same value, X2 = X3.

(a) [2 points] What is the error rate of Naive Bayes now, using X1, X2, and X3? The predicted Y
should be computed using the assumption of conditional independence, and the error rate should
be computed using the true probabilities.

(b) [2 points] Why does Naive Bayes perform worse with the addition of X3?

Hint: Does the key assumption of Naive Bayes still hold?

(c) [2 points] Now consider a logistic regression model M, with weight vector w = [w1, w2] that is
used to predict Y using X1 and X2 and another model M′, with weight vector w′ = [w′1, w

′
2, w

′
3]

that is used to predict Y using X1, X2, and X3. What is the relation between w and w′ after
training both models?

(d) [2 points] Will the trained logistic regression model M′ suffer from the same problem as the
Naive Bayes model in part (a)? Explain why or why not.

3 Gradient Descent for Logistic Regression [50 points]

In this problem, you will implement (unregularized/regularized) logistic regression for binary classification
problems using gradient descent. Note that you may not use any libraries/packages that implement
gradient descent - you must implement it yourself. Cross validation is NOT needed for this program-
ming assignment. For all plots you make, you MUST provide title, x-label, y-label and legend (if there is
more than one curve). Note that you need to submit your source code as part of the homework
PDF that you submit.

3.1 EmailSpam Data

This dataset contains 941 instances and each of them is labeled as either a spam or ham (not spam) email.
Each data instance is the text which is the content of the email (subject and body), and your goal is to
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Algorithm 1 Pseudocode for generating bag-of-word features from text

1: Initialize feature vector bg feature = [0,0,...,0]
2: for token in text.tokenize() do
3: if token in dict then
4: token idx = getIndex(dict, token)
5: bg feature[token idx]++
6: else
7: continue
8: end if
9: end for

10: return bg feature

classify each email as either a spam or a ham. We have already divided this dataset into training and test
datasets, and each of these datasets is stored in two distinct folders (one corresponding to ham and the other
corresponding the spam). In other words, to build your model, you need to iterate through all the text files
within /train/spam and /train/ham, and to test your model you need to iterate through /test/spam and
/test/ham.

3.2 Feature Representation

An essential part of machine learning is to build the feature representation for raw input data, which is often
unstructured. Once we construct the features, each data instance xi can be represented as:

xi = (xi1, ..., xid)

where xij denotes the jth feature for the ith instance.
Since each data instance is text, you need to find a way of converting it into a feature vector. In this

problem, you will use the “Bag-of-Words” representation. More specifically, you will convert the text into a
feature vector in which each entry of the vector is the count of words that occur in that text. You will be
provided with the predefined dictionary (dic.dat), and you should only consider words that appear in that
dictionary and ignore all others.2 Above is the pseudocode for generating bag-of-word features from text.
For tokenization, please tokenize the string only using whitespace and these three delimiters: ’.,?’.
See below for an example:3

Email: hey, i have a better offer for you, offer. better than all other spam filters. Do you like accepting offer?

Pre-defined Dictionary: [add, better, email, filters, hey, offer,like, spam,special]

Bag-of-words feature vector: [0, 2, 0, 1, 1, 3, 1, 1, 0]

(Q3.2). [8 points] After converting all training data into bag-of-words feature vectors, what
are the 3 words that occur most frequently? Report the results using this format:
{(word1: # of occurrences), (word2: # of occurrences), (word3: # of occurrences)}

2In practice, you need to define the dictionary based on the specific requirements of your application. This process usually
involves removing “stop words”, “stemming”, etc. In this homework, you don’t need to consider these issues.

3http://en.wikipedia.org/wiki/Bag-of-words_model also provides a simple example.
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3.3 Implementation

The regularized cross-entropy function can be written as:

ε(w, b) = −
n∑
i=1

{yi log σ(b+ w>xi) + (1− yi) log[1− σ(b+ w>xi)]}+ λ‖w‖22 ,

where xi ∈ Rd, w ∈ Rd, and σ(·) is the sigmoid function. λ is the regularization coefficient and b is the
bias parameter. Note that we don’t regularize the bias term b. Please use the following configuration when
implementing batch gradient descent below.

Stopping Criteria. Run for 50 iterations.
Step size. Use a fixed step size (i.e., set the step size to a constant number).
Initialization. Initialize the weight w to 0, and b to 0.1.
Extreme Condition. It is possible that when σ(b+wTx) approaches 0, log(σ(b+wTx)) goes to -infinity. In
order to prevent such case, please bound the value σ(b + wTx) to be larger than the small constant value,
1e− 16. You can use the following logic in your code:

tmp = σ(b+ wTx)
if tmp < 1e− 16 then

tmp = 1e− 16
Similarly, you may need to bound the value of 1− σ(b+ wTx) when σ(b+ wTx) is close to 1.

3.4 Batch Gradient Descent

(Q3.4a) [8 points] Write down the gradient descent updates for w and b, for both unregularized
logistic regression and regularized logistic regression. In particular, at iteration t using data points
X = [x1,x2, ...,xn], where xi = [xi1, ..., xid], and yi ∈ {0, 1} is the label, how do we compute wt+1 and bt+1

from wt and bt?

(Q3.4b) [14 points] For step sizes η = {0.001, 0.01, 0.05, 0.1, 0.5} and without regularization, implement
batch gradient descent (using the whole training data for the gradient calculation).

• Plot the cross-entropy function value with respect to the number of iterations (T = [1, ..., 50]) for the
training data for each step size.

• Report the L2 norm of the vector w after 50 iterations for each step size ηi (fill in the table below).

Step size η = 0.001 η = 0.01 η = 0.05 η = 0.1 η = 0.5
L2 norm (without regularization)

(Q3.4c) [20 points] For step sizes η = {0.001, 0.01, 0.05, 0.1, 0.5} and with regularization coefficients
λ = {0, 0.1, 0.2, 0.3, 0.4, 0.5}, do the following:

• Setting λ = 0.1, plot the cross-entropy function value with respect to the number of iterations
(T = [1, ..., 50]) for the training data for each step size.

• Setting η = 0.01, report the L2 norm of the vector w after 50 iterations for each regularization
coefficient λi (fill in the table below).

Regularization parameter λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5
L2 norm (with η = 0.01)
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• Plot the cross-entropy function value with respect to λ = 0, 0.1, . . . , 0.5 for the test data when
η = 0.05.

4 SVMs: Hinge loss and mistake bounds [10 points]

Suppose we build a predictive model ŷ = fw(x) = sgn(wTx), where sgn(z) = 1 if z is positive and -1
otherwise. Here we are dealing with binary predictions where each label is in {−1, 1}. The classification loss
counts the number of mistakes (i.e., points where y 6= sgn(wTx)) that we make with w on a dataset. The
SVM loss function can be viewed as a relaxation to the classification loss. The hinge loss on a pair (x, y) is
defined as:

`((x, y),w) = max
[
0, 1− y(wTx)

]
, (1)

where x ∈ RD, w ∈ RD, and y ∈ {−1, 1}. The SVM attempts to minimize:

1

N

N∑
i=1

`((xi, yi),w) + λ‖w‖2, (2)

where λ ≥ 0 is the regularization parameter.
Suppose that for some w we have a correct prediction of yi with xi, i.e. yi = sgn(wTx). What range

of values can the hinge loss, `((x, y),w), take on this correctly classified example? Points that are classified
correctly and which have non-zero hinge loss are referred to as margin mistakes.
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