
Homework #2

18-461/661: Intro to ML for Engineers

Prof. Gauri Joshi and Prof. Carlee Joe-Wong

Due: Monday, Feb. 10, 2020 at 8:59pm PT/11:59pm ET

Please remember to show your work for all problems and to write down the names of any students
that you collaborate with. The full collaboration and grading policies are available on the course website:
https://www.andrew.cmu.edu/course/18-661/.

Your solutions should be uploaded to Gradescope (https://www.gradescope.com/) in PDF format by
the deadline. We will not accept hardcopies. If you choose to hand-write your solutions, please make sure
the uploaded copies are legible. Gradescope will ask you to identify which page(s) contain your solutions to
which problems, so make sure you leave enough time to finish this before the deadline. We will give you a
30-minute grace period to upload your solutions in case of technical problems.

1 How do hormones impact your growth?[20 points]

Two groups of scientists perform a series of experiments to measure the impact of different doses of a
set of p hormones (represented by x ∈ Rp) on animals’ rate of growth, which is represented as y ∈ R.
Scientists believe that the relation between the growth and the hormones can be assumed to be linear, i.e.,
y = x>w where w is a vector of parameters that may be different for different species. The groups performed
experiments to estimate w for two different species:

(i) The first group experimented with rabbits to find wR and obtained n pairs of measurements (xR,i, yR,i)
for i = 1, . . . , n.

(ii) The second group experimented with mice to find wM and obtainedm pairs of measurements (xM,i, yM,i)
for i = 1, . . . ,m.

Questions:

(a) [3 points] Write down the residual sum of squares functions RSS(R)(wR) and RSS(M)(wM ) for the
rabbits and mice experiment groups respectively.

(b) [5 points] The scientists initially wanted to find one set of parameter values w that fits both species’
datasets, instead of finding separate wR and wM . Find an expression for ŵ that minimizes the total
residual sum: RSS(R)(w) + RSS(M)(w).

(c) [6 points] Scientists found that using one w is a little inaccurate. They want to find wR and wM

separately on each data set, but they still believe that wR and wM should be similar but not necessarily
the same. They want to enforce this prior knowledge by adding a regularizer to the loss function as
follows:(Note: We are using L2 regularization below)

RSS(R)(wR) +RSS(M)(wM ) +
λ

2
||wR −wM ||22. (1)

Find ŵR and ŵM , the parameter vectors that minimize this new loss function with the regularizer.
Note that full credit will be awarded for writing down the normal equations in terms of wR and wM

and explaining in words what subsequent steps are required.

1

https://www.andrew.cmu.edu/course/18-661/.
https://www.gradescope.com/


(d) [3 points] How will ||ŵR − ŵM || change as we increase λ?

(e) [3 points] How will ||ŵR||
||ŵ|| and ||ŵM ||

||ŵ|| change as λ goes to infinity?(Remember that ŵ is the weight

vector that minimizes the combined RSS in part (b).)

2 Hoeffding’s inequality and confidence of MLE estimate [20 points]

Let us go back to the Dogecoin example from Lecture 2’s slides. Peter found a Dogecoin in the corridor in
front of HH 1107. As it is worthless, Peter decided to use it only for choosing the first team to play in the
soccer game he is refereeing next weekend. As a diligent referee, Peter wants to make sure that the coin is
fair. In other words, the probabilities of heads and tails are both 0.5.

We will assume that each coin flip is independent and denote the probability of heads as p. Peter wants
to estimate p from his experiments of flipping the coin n times.

(a) MLE estimate: [4 points] The diligent Peter flips the coin n = 1000 times for his experiment, and
gets 490 heads and 510 tails. What is his MLE estimate of p?

(b) Hoeffding’s inequality: [4 points] Peter is not sure if his experiment of 1000 coin flips is enough
to claim whether the coin is fair. To see whether 1000 flips are enough, he decides to use Hoeffding’s
inequality, which provides a bound on how fast the sample mean approaches the true mean.

Let X1, · · · , Xn be i.i.d. random variables whose possible values lie in the bounded interval [a, b]. In
our Dogecoin example, each Xi represents the outcome of the ith coin flip, which we represent as “1”
if the outcome is heads and “0” if it is tails. Thus, each Xi ∼ Bernoulli(p), a random variable that is
1 (heads) with probability p and 0 (tails) otherwise.

We denote the sample mean of X as the average of the Xi values: X = 1
n (X1 + · · · + Xn). Then,

Hoeffding’s inequality states the following:

Pr(|X − E[X]| ≥ ε) ≤ 2 exp

(
− 2nε2

(b− a)2

)
. (2)

Rewrite Hoeffding’s inequality (2) for the case X ∼ Bernoulli(p).

(c) Confidence Interval: [4 points] Using the inequality you obtained in part (b), find the probability
that p̂MLE is between p − 0.05 and p + 0.05 after 1000 coin flips. Then, with how much percentage
confidence can Peter claim that p lies in (0.44, 0.54)?

(d) Effect of n on Confidence: [4 points] Find the probability of p lying in (0.44, 0.54) for n = 500
and n = 10000.

(e) Tighter Confidence Interval: [4 points] What is the minimum number of coin flips needed for
Peter to claim that he estimated the true value of p within ±0.01 error (that is, with 99% confidence)?

3 Ridge Regression [20 points]

3.1 Least Squares estimator [5 points]

We are given three training data points as follows:

(x1 = (2,−1), y1 = 3)

(x2 = (4,−2), y2 = 1)

(x3 = (6,−3), y3 = 7)
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We want to fit a simple linear model:

y = w1x[1] + w2x[2] = x>w,

where x[1] and x[2] denote the first and the second dimensions of the feature vector x. Note that there is no

bias term. Compute the weight vector ŵ that minimizes the residual sum of squares error,
∑3

i=1(yi−x>i w)2,
for the given data points. If there is more than one solution, please find all such vectors.

3.2 Implementation of the Ridge Regression Estimator [5 points]

In order to demonstrate the ridge regression estimation, we use a data example prepared by Liebmann et
al. (2009) (https://www.ncbi.nlm.nih.gov/pubmed/19427473). The matrix Y contains the concentration of
glucose and ethanol (in g/L) for n = 166 alcoholic fermentation mashes of different feedstock (rye, wheat
and corn). These are the two dependent variables. There are 235 covariates in X, which contain the first
derivatives of near infrared spectroscopy (NIR) absorbance values at 1115 − 2285 nm. In this problem, we
will predict the glucose concentration for the given covariates. The training dataset (files: Ytraining.csv,
Xtraining.csv) consists of 126 observations. The dataset is further divided into a validation set (files: Yvalida-
tion.csv, Xvalidation.csv) and a testing set (files: Ytesting.csv, Xtesting.csv); each contains 20 observations.
(Note: There is no need to include bias term)

In this sub-question, you will implement the Ridge Regression estimator. Your code must have the
following methods:

• fit(Xn,yn, λ): which fits the model given a value for the regularization parameter.

• predict(X, w): which predicts the values of the dependent variable for a new set of covariates using
the learned model.

Please use the baseline python file provided to write your code, and attach it to your solution pdf.

3.3 Evaluation [10 points]

For the given dataset:

• Plot in the same figure, the learned coefficients w with respect to the regularization parameter λ, when
it ranges from 0.001 to 2 with a step of 0.002.What do you observe?

• Plot on the y-axis the RMSE (Root Mean Squared Error) of the learned model on the validation set
with respect to the regularization parameter. Find the regularization parameter λ∗ which achieves the
minimum RMSE.

• For the λ∗ found above, plot the predicted versus the real value of the glucose concentration, when
the model is evaluated on the testing dataset. That is, for the 20 testing points plot the true values of
glucose concentration (on x-axis) vs. predicted values of glucose concentration (on y-axis).

4 Regression with Regularization [10 points]

You are asked to use regularized linear regression to predict the target y ∈ R from the eight-dimensional
feature vector x ∈ R8. You define the model y = wTx and then you recall from class the following three
objective functions(Note that the bias term is included within each expression as a part of xi):

min
w

n∑
i=1

(yi −wTxi)
2 (3)
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min
w

n∑
i=1

(yi −wTxi)
2 + λ

8∑
j=1

(wj)
2 (4)

min
w

n∑
i=1

(yi −wTxi)
2 + λ

8∑
j=1

|wj | (5)

(a) [3 points] Identify the regularization terms (if any) in each objective function above and state the
type of regularization used for each term.

(b) [2 points] As we increase the value of λ in objective (4), the bias would:

(i) increase

(ii) decrease

(iii) remain unaffected

(c) [2 points] As we increase the value of λ in objective (5), the variance would:

(i) increase

(ii) decrease

(iii) remain unaffected

(d) [3 points] The following table contains the weights learned for all three objective functions (not in
any particular order):

– ColA ColB ColC

w1 0.60 0.38 0.50
w2 0.30 0.23 0.20
w3 -0.10 -0.02 0.00
w4 0.20 0.15 0.09
w5 0.30 0.21 0.00
w6 0.20 0.03 0.00
w7 0.02 0.04 0.00
w8 0.26 0.12 0.05

Determine which column of weight values (A,B or C) corresponds to each objective. Briefly explain
your reasoning.

• Objective 3

• Objective 4

• Objective 5

5 Naive Bayes Classifier [10 points]

Consider the following data set with three features X1,X2,X3, and label Y .

X1 X2 X3 Y

1 0 1 0
0 0 1 0
1 1 0 0
0 0 0 1
1 1 1 1
1 0 0 1
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(a) [3 points] Suppose that we wish to fit a Naive Bayes model to the data, i.e P (Y |X1, ...Xn) ∝
P (Y )

∏n
i=1 P (Xi|Y ). Calculate the probability that Y = 0 given X = (0, 1, 1). Show your work.

(b) [3 points] Given the same data set, apply Laplace Smoothing with k = 1. Calculate the probability
that Y = 1 given X = (0, 1, 0).

(c) [4 points] Now apply Laplace Smoothing with k = 5. What is the probability that Y = 1 given
X = (0, 1, 0)? How does this probability compare with your answer to part (b)? Briefly explain your
answer.

6 Polynomial Regression [20 points]

6.1 Derivation [5 points]

In the class, we have learned that by using non-linear basis functions, we can fit a non-linear model as if it
is a linear model. In this problem, we are given a training data set D that consists of n points, (xi, yi) for
i = 1, · · · , n, and we consider a polynomial regression problem as follows:

yi = w0 + w1xi + · · ·wkx
k
i . (6)

xi and yi are both real numbers.

(a) What is the basis function φ(x) for this problem?

(b) Can you express residual sum of squares error in terms of φ(x)?

(c) What is w =
[
w0, w1, · · · , wk

]>
that minimizes the residual sum of squares error?

6.2 Implementation [5 points]

Now we want to implement polynomial regression on 40 data points in poly reg data.csv. Implement the
following functions:

• fit(X train, Y train, k): This fits a polynomial model on the training dataset given the polynomial
degree k, and outputs the weight terms w.

• validate(X val, Y val, w): This computes the RSS error on the validation set given the fitted
weight vector w.

As with Section 3.3, please remember to attach your code to the solution pdf.

6.3 Evaluation [10 points]

Now, divide randomly the dataset into two parts: training set (25 points) and validation set (15 points). By
varying k from 1 to 10, obtain the RSS error on the validation set.

• Plot training error (RSS error on the training set) versus k. From the plot, which k gives you the
minimum training error?

• Plot validation error versus k. Plot which k gives you the minimum validation error?

• If the optimum k values for training error and validation error are different, can you explain why?

• For each k = 1, 3, 5, 10, create a scatter plot of the training data points. On the same plot for each k,
draw a line for the fitted polynomial.

5


	How do hormones impact your growth?[20 points] 
	Hoeffding's inequality and confidence of MLE estimate [20 points] 
	Ridge Regression [20 points] 
	Least Squares estimator [5 points] 
	Implementation of the Ridge Regression Estimator [5 points] 
	Evaluation [10 points] 

	Regression with Regularization [10 points] 
	Naive Bayes Classifier [10 points] 
	Polynomial Regression [20 points] 
	Derivation [5 points] 
	Implementation [5 points] 
	Evaluation [10 points] 


