
Andrew login ID:

Full Name:

Section:

15-213/18-243, Spring 2011

Final Exam
Tuesday, May 3, 2011

Page 1 of 33

Instructions:

• Make sure that your exam is not missing any sheets, then write your Andrew login ID, full name, and
section on the front.

• This exam is closed book and closed notes. A notes sheet is attached to the back.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 200 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Good luck!

1 (24):

2 (14):

3 (20):

4 (14):

5 (14):

6 (10):

7 (14):

8 (25):

9 (15):

10 (14):

11 (14):

12 (14):

13 (8):

TOTAL (200):

Page 2 of 33

Problem 1. (24 points):
Multiple choice.

Write the correct answer for each question in the following table:

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

1. Which of the following is a legitimate difference between IA-32 and x86-64?

(a) Buffer overflow exploits are impossible under x86-64.

(b) IA-32 has caller- and callee-saved register conventions, while x86-64 does not.

(c) Under x86-64, any instructions that take 32-bit operands are illegal.

(d) None of the above.

2. Which of the following is the best justification for using the middle bits of an address as the set index
into a cache rather than the most significant bits?

(a) Indexing with the most significant bits would necessitate a smaller cache than is possible with
middle-bit indexing, resulting in generally worse cache performance.

(b) It is impossible to design a system that uses the most significant bits of an address as the set
index.

(c) The process of determining whether a cache access will result in a hit or a miss is faster using
middle-bit indexing.

(d) A program with good spatial locality is likely to make more efficient use of the cache with
middle-bit indexing than with high-bit indexing.

3. Which of the following is not true about POSIX-style signals?

(a) Certain signals cannot be blocked.

(b) A process can send a signal to itself.

(c) A signal handler executing as the result of a received signal can never be interrupted by another
incoming signal.

(d) Signals can only be delivered when returning from system mode.

Page 3 of 33

4. Which of the following is not a benefit of virtual memory?

(a) It allows the virtual address space to be larger than the physical address space

(b) No process can accidentally access the memory of another process

(c) The TLB is more effective since without it dereferencing a virtual address now requires two or
more memory accesses

(d) Different processes can have overlapping virtual address spaces without conflict

5. Which of the following is a difference between blocking and ignoring a signal?

(a) Once a blocked signal is unblocked, it will be handled by the process. A signal that comes while
it is being ignored will never be handled.

(b) SIGSTOP and SIGINT can be ignored, but not blocked.

(c) Ignoring a signal only causes it to have no effect, while blocking a signal returns the signal to
its sender.

(d) None of the above

6. Where is the first argument to a function located in 32-bit assembly code, immediately after the call
instruction is executed?

(a) %ebp + 0x4

(b) %ebp - 0x4

(c) %esp + 0x4

(d) %exp - 0x4

Page 4 of 33

7. Consider the following piece of code, where out.txt’s contents are “abc”:

int main(int argc, char** argv)
{

int fd = open("out.txt", O_RDWR);
char str[] = "xyz";
char c;

write(fd1, str, 1);
read(fd1, &c, 1);
write(fd1, &c, 1);
return 0;

}

What is the contents of out.txt after the code is run? Assume all system calls succeed.

(a) xbb

(b) xba

(c) xac

(d) boat

8. Which of the following is the best reason to choose FastCGI over CGI?

(a) Superior support by web servers like Apache

(b) Lower process creation costs

(c) Lower process communication costs

(d) Better process locality (all tasks can be executed locally)

9. Which of the following system calls can fail due to a network failure?

(a) socket(...)

(b) listen(...)

(c) bind(...)

(d) gethostbyname(...)

10. Which of the following are copied on fork and preserved on exec?

(a) Global variables.

(b) File descriptor tables.

(c) Open file entry structs.

(d) None of the above.

Page 5 of 33

11. Why would the kernel designer opt for a 2-level page table when a full 2-level page table takes up
more memory than a full 1-level page table?

(a) 2-level tables can translate virtual addresses faster.

(b) 2-level tables can reference more memory than 1 level tables.

(c) Most of the time, a 2-level page table will take up less memory than a 1 level page table.

(d) They wouldn’t. Adding more tables offers no advantages.

12. What section of memory holds the assembly for printf?

(a) Stack

(b) Kernel memory

(c) Shared libraries

(d) Heap

13. Every thread has its own .

(a) Heap

(b) Global values

(c) Stack

(d) Text data

14. Why is gethostbyname not thread safe?

(a) Only one thread at a time can do a DNS lookup

(b) It doesn’t have a mutex around it

(c) It returns a pointer to global shared memory

(d) It shares instructions with other threads

15. If a page table on a 32-bit system is 2KB in size, how many entries does it contain?

(a) 2048

(b) 1024

(c) 512

(d) 256

Page 6 of 33

16. What is the function of the TLB?

(a) Caches data

(b) Caches instructions

(c) Caches translation of virtual addresses

(d) Translates physical addresses to virtual addresses

17. What is distinctive about superscalar processors?

(a) Can run at frequencies over 3.5GHz

(b) Can address over 4GB of memory

(c) Can perform more than one instruction per cycle

(d) Can have more than 2 levels of cache

(e) Have more than one core per processor

18. True/False: When requested to send 20 bytes over a network socket, execution will block until all 20
bytes have been sent.

(a) True

(b) False

19. True/False: When printf returns, the programmer cannot be guaranteed that the data has appeared
on the user’s terminal.

(a) True

(b) False

20. Which of the following tools would you first use to debug an application which is exiting with the
error “Segmentation fault”?

(a) gdb

(b) strace

(c) strings

(d) objdump

Page 7 of 33

21. Which of the following tools would you first use to debug a network application that never appears to
accept any connections?

(a) gdb

(b) strace

(c) objdump

(d) valgrind

22. Which of the following tools would you first use to debug an application which is exiting with a
glibc error: double free detected?

(a) gdb

(b) strace

(c) wireshark

(d) valgrind

23. A 256-byte 4-way set associative cache with 16 byte blocks has

(a) 4 sets

(b) 16 sets

(c) 64 sets

(d) No sets

24. Imagine a floating point format with no sign bit, one exponent bit, and one fraction bit. Which of the
following is not a number?

(a) 00

(b) 01

(c) 10

(d) 11

(e) None of the above

Page 8 of 33

Problem 2. (14 points):
Stack discipline.

Consider the following C code and assembly code for two mutually recursive functions:

int even(unsigned int n) 0x080483e4 <even+0>: push %ebp
{ 0x080483e5 <even+1>: mov %esp,%ebp

if(!n) 0x080483e7 <even+3>: sub $0x8,%esp
{ 0x080483ea <even+6>: cmpl $0x0,0x8(%ebp)

return 1; 0x080483ee <even+10>: jne 0x80483f9 <even+21>
} 0x080483f0 <even+12>: movl $0x1,-0x4(%ebp)

0x080483f7 <even+19>: jmp 0x804840a <even+38>
return odd(n - 1); 0x080483f9 <even+21>: mov 0x8(%ebp),%eax

} 0x080483fc <even+24>: sub $0x1,%eax
0x080483ff <even+27>: mov %eax,(%esp)
0x08048402 <even+30>: call 0x804840f <odd>
0x08048407 <even+35>: mov %eax,-0x4(%ebp)
0x0804840a <even+38>: mov -0x4(%ebp),%eax
0x0804840d <even+41>: leave
0x0804840e <even+42>: ret

int odd(unsigned int n) 0x0804840f <odd+0>: push %ebp
{ 0x08048410 <odd+1>: mov %esp,%ebp

if(!n) 0x08048412 <odd+3>: sub $0x8,%esp
{ 0x08048415 <odd+6>: cmpl $0x0,0x8(%ebp)

return 0; 0x08048419 <odd+10>: jne 0x8048424 <odd+21>
} 0x0804841b <odd+12>: movl $0x0,-0x4(%ebp)

0x08048422 <odd+19>: jmp 0x8048435 <odd+38>
return even(n - 1); 0x08048424 <odd+21>: mov 0x8(%ebp),%eax

} 0x08048427 <odd+24>: sub $0x1,%eax
0x0804842a <odd+27>: mov %eax,(%esp)
0x0804842d <odd+30>: call 0x80483e4 <even>
0x08048432 <odd+35>: mov %eax,-0x4(%ebp)
0x08048435 <odd+38>: mov -0x4(%ebp),%eax
0x08048438 <odd+41>: leave
0x08048439 <odd+42>: ret

Imagine that a program makes the procedure call even(3). Also imagine that prior to the invocation,
the value of %esp is 0xffff1000—that is, 0xffff1000 is the value of %esp immediately before the
execution of the call instruction.

Page 9 of 33

A. Note that the call even(3) will result in the following function invocations: even(3), odd(2),
even(1), and odd(0). Using the provided code and your knowledge of IA32 stack discipline,
fill in the stack diagram with the values that would be present immediately before the execution of
the ret instruction for odd(0). Cross out each blank for which there is insufficient information to
complete.

+--------------------------------+
| | 0xffff1004
+--------------------------------+
| | 0xffff1000
+--------------------------------+
| | 0xffff0ffc
+--------------------------------+
| | 0xffff0ff8
+--------------------------------+
| | 0xffff0ff4
+--------------------------------+
| | 0xffff0ff0
+--------------------------------+
| | 0xffff0fec
+--------------------------------+
| | 0xffff0fe8
+--------------------------------+
| | 0xffff0fe4
+--------------------------------+
| | 0xffff0fe0
+--------------------------------+
| | 0xffff0fdc
+--------------------------------+
| | 0xffff0fd8
+--------------------------------+
| | 0xffff0fd4
+--------------------------------+
| | 0xffff0fd0
+--------------------------------+
| | 0xffff0fcc
+--------------------------------+
| | 0xffff0fc8
+--------------------------------+
| | 0xffff0fc4
+--------------------------------+
| | 0xffff0fc0
+--------------------------------+

B. What are the values of %esp and %ebp immediately before the execution of the ret instruction for
odd(0)?

Page 10 of 33

Problem 3. (20 points):
Assembly/C translation.

Consider the following C code and assembly code for a curiously-named function:

typedef struct node 0x4005d0: mov %rbx,-0x18(%rsp)
{ 0x4005d5: mov %rbp,-0x10(%rsp)

void *data; 0x4005da: xor %eax,%eax
struct node *next; 0x4005dc: mov %r12,-0x8(%rsp)

} node_t; 0x4005e1: sub $0x18,%rsp
0x4005e5: test %rdi,%rdi

node_t *lmao(node_t *n, int f(node_t *)) 0x4005e8: mov %rdi,%rbx
{ 0x4005eb: mov %rsi,%rbp

node_t *a, *b; 0x4005ee: je 0x40061e <lmao+78>
0x4005f0: mov 0x8(%rdi),%rdi

if(________________) 0x4005f4: callq 0x4005d0 <lmao>
{ 0x4005f9: mov %rbx,%rdi

return NULL; 0x4005fc: mov %rax,%r12
} 0x4005ff: callq *%rbp

0x400601: mov %eax,%edx
a = ________________; 0x400603: mov %r12,%rax

0x400606: test %edx,%edx
if(________________) 0x400608: jle 0x40061e <lmao+78>
{ 0x40060a: mov $0x10,%edi

b = ________________; 0x40060f: callq 0x400498 <malloc>
b->data = n->data; 0x400614: mov (%rbx),%rdx
b->next = ________________; 0x400617: mov %r12,0x8(%rax)
return b; 0x40061b: mov %rdx,(%rax)

} 0x40061e: mov (%rsp),%rbx
0x400622: mov 0x8(%rsp),%rbp

return ________________; 0x400627: mov 0x10(%rsp),%r12
} 0x40062c: add $0x18,%rsp

0x400630: retq

Using your knowledge of C and assembly, fill in the blanks in the C code for lmao with the appropriate
expressions. (Note: 0x400498 is the address of the C standard library function malloc.)

Page 11 of 33

Problem 4. (14 points):
Process control.

Consider the following C program:

int main()
{

pid_t pid;
int status, counter = 4;

while(counter > 0)
{

pid = fork();

if(pid)
{

counter /= 2;
}
else
{

printf("%d", counter); /* (1) */
break;

}
}

if(pid)
{

waitpid(-1, &status, 0);
counter += WEXITSTATUS(status);

waitpid(-1, &status, 0);
counter += WEXITSTATUS(status);

printf(";%d", counter); /* (2) */
}

return counter;
}

Page 12 of 33

Use the following assumptions to answer the questions:

• All processes run to completion, and no system calls fail.

• printf is atomic and calls fflush(stdout) after printing its argument(s) but before returning.

For each question, there may be more blanks than necessary.

A. List every individual digit that can be emitted by a call to printf. Include any digits that can be
printed along with the semicolon by the printf annotated with (2). For example, if 1521;3 were
a possible output of the program, the solutions would include 1, 2, 3, and 5.

________ ________ ________ ________

________ ________ ________ ________

B. Notice that the printf annotated with (2) emits a semicolon in addition to a digit. List all of the
digit sequences that can be printed before the semicolon is emitted. For example, if 1521;3 were a
possible output of the program, 1521 would be one solution.

________ ________ ________ ________

________ ________ ________ ________

________ ________ ________ ________

C. Now list all of the digit sequences that can be printed after the semicolon is emitted.

________ ________ ________ ________

________ ________ ________ ________

Page 13 of 33

Problem 5. (14 points):
Concurrency.

Consider the following implementation of reader writer locks. A reader writer lock is a concurrency mech-
anism that allows either multiple readers to have access to a critical section or a single writer.

struct rwlock {
sem_t *sem; int readers; int writers;

};

void rwlock_init(struct rwlock *lock)
{

sem_init(&lock->sem, 1);
lock->readers = 0;
lock->writers = 0;

}

void readlock(struct rwlock *lock)
{

while(1) {
sem_wait(lock->sem);
if(lock->writers == 0) {

lock->readers++; break;
}
sem_post(lock->sem);

}
}

void writelock(struct rwlock *lock)
{

while(1) {
sem_wait(lock->sem);
if(lock->readers == 0 && lock->writers == 0) {

lock->writers = 1; break;
}
sem_post(lock->sem);

}
}

void unlock(struct rwlock *lock)
{

sem_wait(lock->sem);
if(lock->readers > 0)

lock->readers--;
else

lock->writers--;
sem_post(lock->sem);

}

Page 14 of 33

A. What is the problem with the above implementation?

B. Starvation is a problem where one thread, or kind of thread (think reader or writer), is unable to
acquire a resource. After fixing the previous problem, is starvation possible? How?

Page 15 of 33

Problem 6. (10 points):
File I/O

The following problems refer to a file called numbers.txt, with contents the ASCII string 0123456789.
You may assume calls to read() are atomic with respect to each other. The following file, read and print one.h,
is compiled with each of the following code files.

#ifndef READ_AND_PRINT_ONE
#define READ_AND_PRINT_ONE
#include <stdio.h>
#include <unistd.h>

static inline void read_and_print_one(int fd) {
char c;
read(fd, &c, 1);
printf("%c", c); fflush(stdout);

}
#ENDIF

A. Consider the following code:

#include "read_and_print_one.h"
#include <stdlib.h>
#include <fcntl.h>

int main() {
int file1 = open("numbers.txt", O_RDONLY);
int file2;
int file3 = open("numbers.txt", O_RDONLY);
file2 = dup2(file3, file2);

read_and_print_one(file1);
read_and_print_one(file2);
read_and_print_one(file3);
read_and_print_one(file2);
read_and_print_one(file1);
read_and_print_one(file3);

return 0;
}

Page 16 of 33

List all possible outputs of the above code.

Page 17 of 33

B. Consider the following code:

#include "read_and_print_one.h"
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/wait.h>

int main() {
int file1;
int file2;
int file3;
int pid;

file1 = open("numbers.txt", O_RDONLY);
file3 = open("numbers.txt", O_RDONLY);

file2 = dup2(file3, file2);

read_and_print_one(file1);
read_and_print_one(file2);

pid = fork();

if (!pid) {
read_and_print_one(file3);
close(file3);
file3 = open("numbers.txt", O_RDONLY);
read_and_print_one(file3);

} else {
wait(NULL);
read_and_print_one(file3);
read_and_print_one(file2);
read_and_print_one(file1);

}

read_and_print_one(file3);

return 0;
}

List all possible outputs of the above code.

Page 18 of 33

Problem 7. (14 points):
Deadlocks and Dreadlocks

Two threads (X and Y) access shared variables A and B protected by mutex a and mutex b respectively.
Assume all variable are declared and initialized correctly.

Thread X Thread Y
P(&mutex_a); P(&mutex_b);
A += 10; B += 10;
P(&mutex_b); P(&mutex_a);
B += 20; A += 20;
V(&mutex_b); V(&mutex_a);
A += 30; B += 30;
V(&mutex_a); V(&mutex_b);

A. Show an execution of the threads resulting in a deadlock. Show the execution steps as follows

Thread X Thread Y
P (&mutex a)

A+ = 10

P (&mutex b)

P (&mutex b)

. . .
. . .

Answer:

Page 19 of 33

B. There are different approaches to solve the deadlock problem. Modify the code above to show two
approaches to prevent deadlocks. You can declare new mutex variables if required. Do not change
the order or amount of the increments to A and B. Rather, change the locking behavior around them.
The final values of A and B must still be guaranteed to be incremented by 60.

Answer:

Page 20 of 33

Problem 8. (25 points):
Thread Safety

A fellow 213 student works on cutting edge research finding prime numbers. He wants to speed up his code
by making it multi-threaded. He is running into some issues while implementing a thread safe version of
the next prime function and asks for your help.

struct big_number *next_prime(struct big_number current_prime) {
static struct big_number next;

next = current_prime;
addOne(next);
while (isNotPrime(next)) {

addOne(next);
}

return &next;
}

struct big_number *ts_next_prime(struct big_number current_prime) {
return next_prime(current_prime);

}

A. Why is the function ts next prime thread-unsafe?

Answer:

Page 21 of 33

B. Assume the mutex guarding the call to next prime is initialized correctly in the following code.

struct big_number *ts_next_prime(struct big_number current_prime) {
struct big_number *value_ptr;

sem_wait(&mutex);
value_ptr = next_prime(current_prime);
sem_post(&mutex);

return value_ptr;
}

The following modification to the function is still not thread safe. Explain why, and show an example
execution with two threads showing the problem?

Show the execution steps as follows

Thread 1 Thread 2
sem wait(&mutex)

sem wait(&mutex);

value ptr = next prime(current prime)

. . .
. . .

Answer:

Thread 1 Thread 2

Page 22 of 33

C. Fill in the blanks below to fix ts next prime.

struct big_number *ts_next_prime(struct big_number current_prime) {
struct big_number *value_ptr;

struct big_number *ret_ptr = __________________________________;
sem_wait(&mutex);
value_ptr = next_prime(current_prime);
__________________________________;
sem_post(&mutex);

return ret_ptr;
}

Why does this fix work? :

D. One disadvantage of using a thread-safe ts next prime as opposed to next prime is higher
overhead. List the overheads.

Answer:

E. Is the final version of your function ts next prime reentrant too?
Circle your answer: Yes No

Page 23 of 33

Problem 9. (15 points):
Structure alignment

Consider the following C struct.

struct st1_t {
char a;
char b;
char c;

};

struct st2_t {
st1_t d;
st1_t e;
st1_t *f;
short g;
char h;
double i;
long j;

};

A. Show how the st1 t struct above would appear on a 32 bit Linux system. Label the bytes that
belong to the various fields with their names and clearly markthe end of the struct. Use hatch marks
to indicate bytes that are allocated in the struct but are not used.

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Page 24 of 33

B. Show how the st2 t struct above would appear on a 32 bit Linux system. Label the bytes that
belong to the various fields with their names and clearly markthe end of the struct. Use hatch marks
to indicate bytes that are allocated in the struct but are not used.

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Page 25 of 33

Problem 10. (14 points):
Floating point

Use the following 8-bit floating point representation: 1 sign bit, 3 exponent bits, and 4 fraction bits.

A. What is the bias?

B. What is the smallest positive value that can be represented?

C. What is the largest positive denormalized number?

D. What is the representation of negative infinity?

E. Fill in the following table. Use round-to-even. Value should be written to decimal

Bits Decimal Value
0 000 0000 0
1 010 0000

-13
1/16

0 111 1111
15/256

Page 26 of 33

Problem 11. (14 points):
Signals.

Consider the following C program:

int counter = 0;

void handler1(int sig) {
printf("%d", counter);
kill(getpid(), SIGUSR2);

}

void handler2(int sig) {
counter = 5;
printf("%d", counter);

}

int main(int argc, char *argv[])
{

int pid;

signal(SIGUSR1, handler1);
signal(SIGUSR2, handler2);

if ((pid = fork())) {
kill(pid, SIGUSR1);

} else {
counter++;
printf("%d", counter);

}

return 0;
}

Using the following assumptions, list all possible outputs of the code:

• All processes run to completion and no system calls will fail

• printf() is atomic and calls fflush(stdout) after printing argument(s) but before returning

Page 27 of 33

Problem 12. (12 points):
Address translation. This problem deals with virtual memory address translation using a multi-level page
table, in particular the 2-level page table for a 32-bit Intel system with 4 KByte pages tables. Assume all
processes are running under Supervisor mode. The following diagrams are direct from the Intel System
Programmers guide and should be used on this problem:

Page 28 of 33

The contents of the relevant sections of memory are shown on this page. All numbers are given in hex-
adecimal. Any memory not shown can be assumed to be zero. The Page Directory Base Address is
0x0045d000.

For each of the following problems, perform the virtual to physical address translation. If an error occurs at
any point in the address translation process that would prevent the system from performing the lookup, then
indicate this by circling FAILURE and noting the physical address of the table entry that caused the failure.

For example, if you were to detect that the present bit in the PDE is set to zero, then you would leave the
PTE address in (b) empty, and circle FAILURE in (c), noting the physical address of the offending PDE.

TLB
Index Tag Frame Number Valid

0
0x03506 0x98f8a 1
0x27f4a 0x34abe 0

1
0x1f7ee 0x95cbc 0
0x2a064 0x72954 1

2
0x1f7f0 0x95ede 0
0x2005d 0xaa402 0

3
0x3fc2e 0x2029e 1
0x3df82 0xff644 0

Address Contents
000c3020 345ab236
000c3080 345ab237
000c332f 08e4523f
000c3400 93c2ed98
000c3cbc 34abd237
000c3ff0 93c2ed99
000c4020 8e56e237
000c432f 33345237
000c4400 43457292
000c4cbc 385ed293
000c4ff0 c3726292
0045d000 000c3292
0045d028 000c4297
0045d032 0df2a292
0045d0a0 000c3297
0045d3ff 0df2a236
0045d9fc 0df2a237
0df2a000 deded000
0df2a080 bc3de239
0df2a3fc 000c4296
0df2a4a0 00324236
0df2a4fc df72c9a6
0df2b080 01f008c3
0df2bff0 000c5112

Page 29 of 33

1. Read from virtual address 0x9fd28c10. Scratch space:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(a) (TLB Hit) Physical address is: 0x

OR

(b) Physical address of PDE: 0x

(c) Physical address of PTE: 0x

(d) (SUCCESS) The physical address accessed is: 0x

OR

(FAILURE) The physical address of the table entry causing the failure is: 0x

Page 30 of 33

2. Read from virtual address 0x0d4182c0. Scratch space:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(a) (TLB Hit) Physical address is: 0x

OR

(b) Physical address of PDE: 0x

(c) Physical address of PTE: 0x

(d) (SUCCESS) The physical address accessed is: 0x

OR

(FAILURE) The physical address of the table entry causing the failure is: 0x

Page 31 of 33

3. Read from virtual address 0x0a32fcd0.
Scratch space:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(a) (TLB Hit) Physical address is: 0x

OR

(b) Physical address of PDE: 0x

(c) Physical address of PTE: 0x

(d) (SUCCESS) The physical address accessed is: 0x

OR

(FAILURE) The physical address of the table entry causing the failure is: 0x

Page 32 of 33

Problem 13. (8 points):
Networks.

Consider a multi-threaded proxy that handles requests concurrently and a single-threaded proxy that handles
requests serially.

A. Under which circumstances would the multi-threaded proxy perform better than the single-threaded
proxy?

B. Under which circumstances would the single-threaded proxy perform no worse than the multi-threaded
proxy?

Page 33 of 33

